A CHARACTERIZATION OF HALF POSITIONAL ω-REGULAR LANGUAGES

 Antonio Casares, Pierre Ohlmann

 Antonio Casares, Pierre Ohlmann}

Games and Half Positionality

Games on Graphs:Eve
 Adam
-A play produces an infinite word $w \in \Sigma^{\omega}$.
-Winning objective: $L \subseteq \Sigma^{\omega}$.

Half Positionality:

$>$ Positional strategy (for Eve): $\sigma: V_{\text {Eve }} \rightarrow E$.
> A language L is half positional if, for every game \mathcal{G} using L as winning condition:

$$
\text { Eve can win } \mathcal{G} \Longrightarrow \quad \begin{gathered}
\text { She can win using a } \\
\text { positional strategy. }
\end{gathered}
$$

Main Results

Complete characterization of deterministic parity automata recognizing half positional languages.

Corollaries for ω-regular languages:
> Decidability in polynomial time.
$>\begin{gathered}\text { Half positional for } \\ \text { finite, Eve-games }\end{gathered} \Longleftrightarrow \begin{gathered}\text { Half positional for } \\ \text { all games }\end{gathered}$
> Closure of prefix-independent half positional languages under union (Kopczyński's conj. for ω-reg).
> Closure of half positional languages under addition of a neutral letter (Ohlmann's conj. for ω-reg).

The Characterization: An Example

$$
\begin{gathered}
L=\operatorname{lnf}(a) \text { or }(\operatorname{No}(x) \text { and } \neg \operatorname{lnf}(b b)) \\
\text { over } \Sigma=\{a, b, c, x\}
\end{gathered}
$$

Parity automaton

Total order over residuals
Residuals totally ordered by inclusion.

Uniformity of 0 -transitions

> If $q \sim p:$
> $q \xrightarrow{\alpha: 0} \Longrightarrow p \xrightarrow{\alpha: 0}$

Total order of 1-safe languages
$\left.\mathcal{A}\right|_{\geq 1}=$ Restriction to priorities ≥ 1
$\mathcal{L}_{1}(q)=\left\{w \mid q{ }^{\sim} \sim\right.$ avoids 1 in $\left.\left.\mathcal{A}\right|_{\geq 1}\right\}$
Inside each SCC of $\left.\mathcal{A}\right|_{\geq 1}$, inclusion of $\mathcal{L}_{1}(q)$ is a total preorder.

$$
\begin{aligned}
\mathcal{L}_{1}\left(q_{2}\right)=c^{*} & +\left(c^{+} b\right)^{*} \subsetneq \\
& \subsetneq \mathcal{L}_{1}\left(q_{3}\right)=c^{*}+\left(b c^{+}\right)^{*}
\end{aligned}
$$

