A characterization of half-positional ω -regular languages

Antonio Casares, Pierre Ohlmann

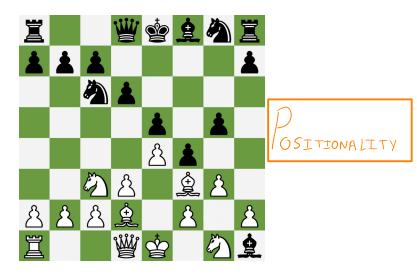
Automata Seminar IRIF 13 October 2023



White to move. What is the optimal move?

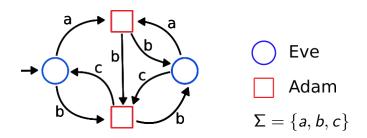
Does not Clepend on the past of the play**

White to move. What is the optimal move?



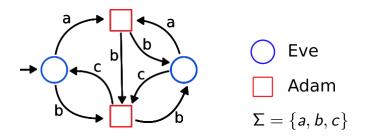
White to move. What is the optimal move?

Games on Graphs



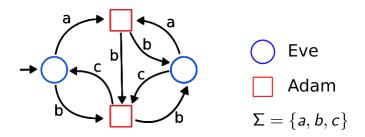
Players move a token in turns producing an infinite word w ∈ Σ^ω.

Games on Graphs

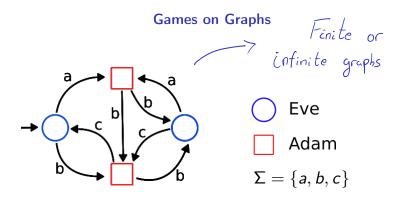


- Players move a token in turns producing an infinite word w ∈ Σ^ω.
- The winning condition is given by a language $L \subseteq \Sigma^{\omega}$.

Games on Graphs

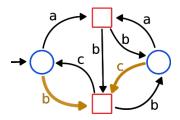


- Players move a token in turns producing an infinite word w ∈ Σ^ω.
- The winning condition is given by a language $L \subseteq \Sigma^{\omega}$.
- Eve wins if the sequence $w \in \Sigma^{\omega}$ produced belongs to *L*.



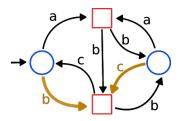
- Players move a token in turns producing an infinite word w ∈ Σ^ω.
- The winning condition is given by a language $L \subseteq \Sigma^{\omega}$.
- Eve wins if the sequence $w \in \Sigma^{\omega}$ produced belongs to *L*.

Positional Strategies



A positional strategy (for Eve) is a mapping: $\sigma \colon V_{\mathsf{Eve}} \to E.$

Positional Strategies



A positional strategy (for Eve) is a mapping:
$$\sigma\colon V_{\mathsf{Eve}}\to E.$$

The positional strategy above ensures the language

L = Words containing the factor *bc* infinitely often = Inf(*bc*).

Example: Positional strategies do not always suffice

$$L = \texttt{Inf}(a) \land \texttt{Inf}(b)$$

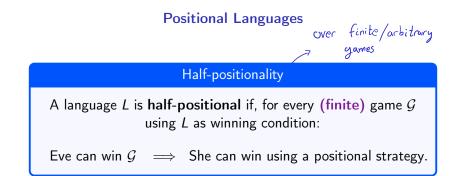
Eve wins, but not positionally.

Positional Languages

Half-positionality

A language *L* is **half-positional** if, for every game G using *L* as winning condition:

Eve can win $\mathcal{G} \ \implies \$ She can win using a positional strategy.



Positional Languages

Half-positionality

A language L is **half-positional** if, for every (finite) game G using L as winning condition:

 $\mathsf{Eve} \ \mathsf{can} \ \mathsf{win} \ \mathcal{G} \ \implies \ \mathsf{She} \ \mathsf{can} \ \mathsf{win} \ \mathsf{using} \ \mathsf{a} \ \mathsf{positional} \ \mathsf{strategy}.$

Bipositionality

A language *L* is **bipositional** if both *L* and $\Sigma^{\omega} \setminus L$ are half-positional.

ω -regular languages

The class of ω -regular languages can be defined equivalently as those that are:

- Recognizable by a non-deterministic Büchi automaton.
- Recognizable by a deterministic parity automaton.
- Definable by ω -regular expressions.
- Definable in MSO with successor.
- Recognizable by ω -semigroups.

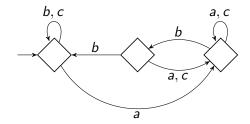
ω -regular languages

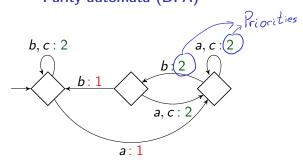
The class of ω -regular languages can be defined equivalently as those that are:

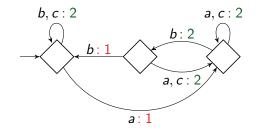
Recognizable by a non-deterministic Büchi automaton.

Recognizable by a deterministic parity automaton.

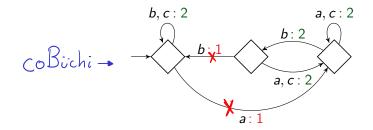
- Definable by ω -regular expressions.
- Definable in MSO with successor.
- Recognizable by ω -semigroups.



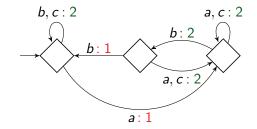




Run accepting if min{*priorities seen infinitely often*} is even.

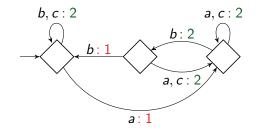


Run accepting if min{*priorities seen infinitely often*} is even.



Run accepting if min{*priorities seen infinitely often*} is even.

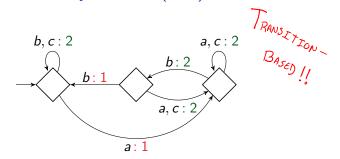
 $\mathcal{L}(\mathcal{A}) = \operatorname{Fin}(a) \lor \operatorname{Fin}(bb)$



Run accepting if min{*priorities seen infinitely often*} is even.

$$\mathcal{L}(\mathcal{A}) = \operatorname{Fin}(a) \lor \operatorname{Fin}(bb)$$

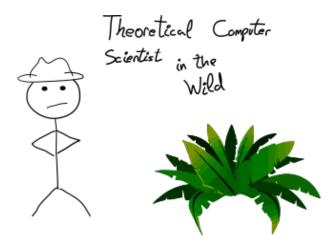
Prefix-independent: $w \in L \iff uw \in L$

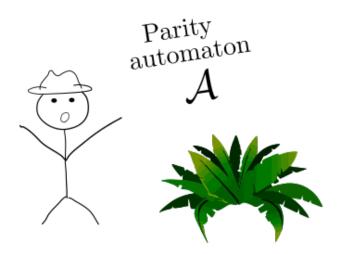


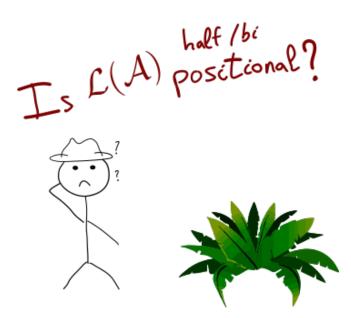
Run accepting if min{*priorities seen infinitely often*} is even.

$$\mathcal{L}(\mathcal{A}) = \operatorname{Fin}(a) \lor \operatorname{Fin}(bb)$$

Prefix-independent: $w \in L \iff uw \in L$







What do we already know?

Bipositionality over finite graphs

 Characterization of bipositionality over finite graphs (Gimbert, Zielonka 2005).

Bipositionality over finite graphs

- Characterization of bipositionality over finite graphs (Gimbert, Zielonka 2005).
- Corollary: L is bipositional if and only if Eve and Adam can win positionally in 1-player games.

Bipositionality over finite graphs

- Characterization of bipositionality over finite graphs (Gimbert, Zielonka 2005).
- Corollary: L is bipositional if and only if Eve and Adam can win positionally in 1-player games.

→1-to-2 player P,ift

Bipositionality over finite graphs

- Characterization of bipositionality over finite graphs (Gimbert, Zielonka 2005).
- Corollary: L is bipositional if and only if Eve and Adam can win positionally in 1-player games.

Bipositionality over infinite graphs

 Characterization of bipositionality over infinite graphs (Colcombet, Niwiński 2006).

For *L* prefix-independent:

L is bipositional \iff *L* is the parity objective.

Bipositionality over finite graphs

- Characterization of bipositionality over finite graphs (Gimbert, Zielonka 2005).
- Corollary: L is bipositional if and only if Eve and Adam can win positionally in 1-planets.

Bipositionality over infi

For *L* prefix-independent:

L is bipositional \iff *L* is the parity objective.

What do we know about half-positionality?

What do we know about half-positionality?

Not much...*

 $^{^{\}ast} This$ is of course not true. There are many very interesting results about half-positionality.

Decidability for finite graphs (Kopczyński 2007)

The following problem is decidable:

Input: DPA A recognising a prefix-independent language. **Question:** $\mathcal{L}(A)$ half-positional over finite graphs?

Decidability for finite graphs (Kopczyński 2007)

The following problem is decidable:

Input: DPA \mathcal{A} recognising a <u>prefix-independent</u> language. **Question:** $\mathcal{L}(\mathcal{A})$ half-positional over finite graphs?

Decidability for finite graphs (Kopczyński 2007) The following problem is decidable in time $O(n^{n^2})$:

Input:DPA \mathcal{A} recognising a prefix-independent language.Question: $\mathcal{L}(\mathcal{A})$ half-positional over finite graphs?

Decidability for finite graphs (Kopczyński 2007) The following problem is decidable in time $O(n^{n^2})$:

Input:DPA \mathcal{A} recognising a prefix-independent language.Question: $\mathcal{L}(\mathcal{A})$ half-positional over finite graphs?

Characterization via universal graphs (Ohlmann 2022) *L* is half-positional over all graphs iff *L* admits well-ordered monotone universal graphs.

Decidability for finite graphs (Kopczyński 2007) The following problem is decidable in time $O(n^{n^2})$:

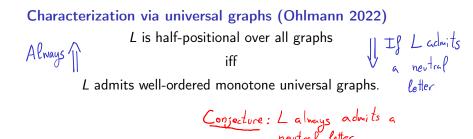
Input:DPA \mathcal{A} recognising a prefix-independent language.Question: $\mathcal{L}(\mathcal{A})$ half-positional over finite graphs?

Characterization via universal graphs (Ohlmann 2022) *L* is half-positional over all graphs iff *L* admits well-ordered monotone universal graphs.

NOT CONSTRUCTIVE!

Decidability for finite graphs (Kopczyński 2007) The following problem is decidable in time $O(n^{n^2})$:

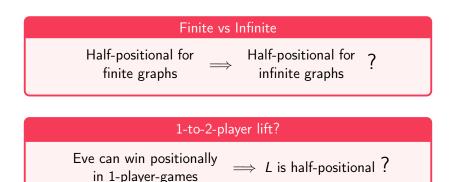
Input:DPA \mathcal{A} recognising a prefix-independent language.Question: $\mathcal{L}(\mathcal{A})$ half-positional over finite graphs?



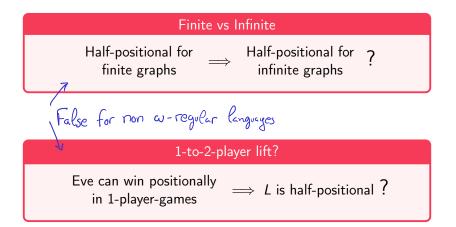
Decidability for infinite graphs?

Decidability for infinite graphs?

Decidability for infinite graphs?



Decidability for infinite graphs?



Questions About Half Positionality

Kopczyński's Conjecture (2006)

Let L_1 and L_2 be two prefix-independent half-positional languages. Then:

 $L_1 \cup L_2$ is half-positional.

Questions About Half Positionality

Kopczyński's Conjecture (2006)

```
Let L_1 and L_2 be two prefix-independent half-positional languages. Then:
```

 $L_1 \cup L_2$ is half-positional.

- Does not hold for finite graphs (Kozachinskiy, 2022). Non ω-regular counterexample!
- Open for infinite graphs.

Contributions

Main Contribution

Characterization of half-positional ω -regular languages We identify a class C of deterministic parity automata such that:

$$\blacktriangleright \ \mathcal{A} \in \mathcal{C} \implies \mathcal{L}(\mathcal{A}) \text{ is half-positional.}$$

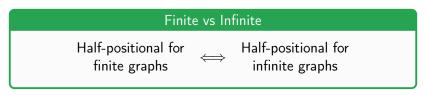
▶ *L* half-positional \implies *L* can be recognized by some $A \in C$.

Corollaries of our Characterization

For *L* an ω -regular language:

Corollaries of our Characterization

For *L* an ω -regular language:

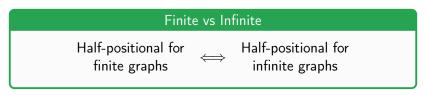


Decidability in polynomial time

Decidability of half-positionality of *L* in **polynomial time**.

Corollaries of our Characterization

For *L* an ω -regular language:



Decidability in polynomial time

Decidability of half-positionality of L in polynomial time.

Eve can win positionally in 1-player-games

 $\iff L$ is half-positional

Corollaries the Characterization

Kopczyński's Conjecture for ω -regular languages

Let L_1 and L_2 be two prefix-independent, ω -regular, half-positional languages. Then:

 $L_1 \cup L_2$ is half-positional.

Corollaries the Characterization

Kopczyński's Conjecture for ω -regular languages

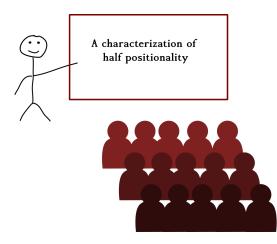
Let L_1 and L_2 be two prefix-independent, ω -regular, half-positional languages. Then:

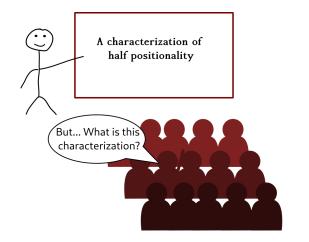
 $L_1 \cup L_2$ is half-positional.

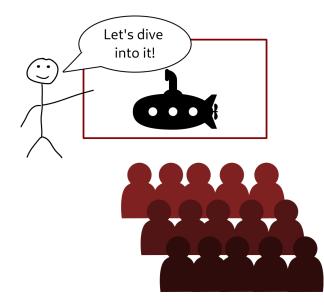
Ohlmann's Neutral Letter Conjecture for ω -regular languages

For *L* an ω -regular language:

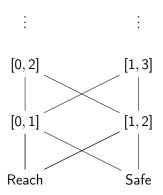
L half-positional \iff (*L*+*neutral letter*) is half-positional.

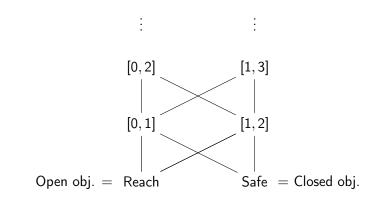


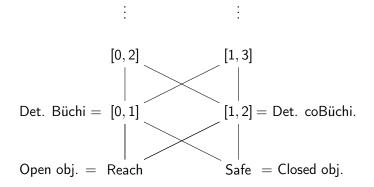


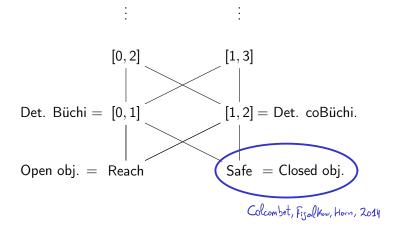


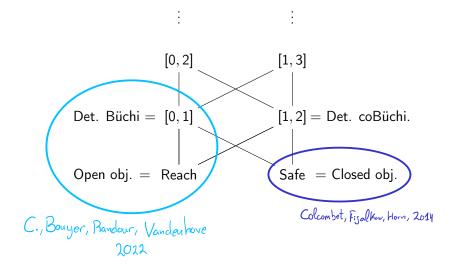
Towards the characterization

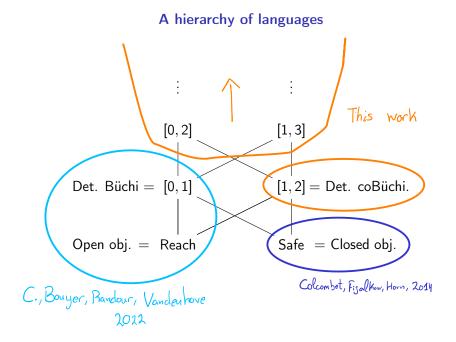












But before climbing the ladder...

But before climbing the ladder...

How to prove a characterization of positionality?

 $\ensuremath{\mathcal{C}}$ a class of languages.

Goal: *L* half-positional iff $L \in C$.

 $\ensuremath{\mathcal{C}}$ a class of languages.

Goal: *L* half-positional iff $L \in C$.

▶ *L* half-positional $\implies L \in C$

 \mathcal{C} a class of languages.

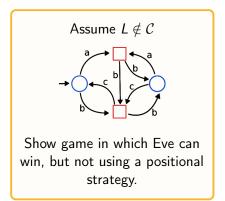
Goal: *L* half-positional iff $L \in C$.

→ *L* half-positional $\implies L \in C$ → *L* ∈ *C* \implies *L* half-positional

 \mathcal{C} a class of languages.

Goal: *L* half-positional iff $L \in C$.

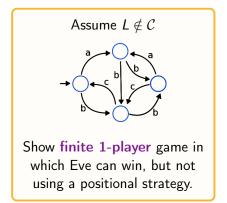
→ L half-positional $\implies L \in C$ → $L \in C \implies L$ half-positional



 $\ensuremath{\mathcal{C}}$ a class of languages.

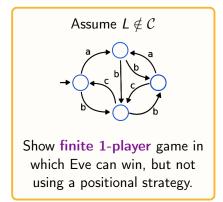
Goal: *L* half-positional iff $L \in C$.

- L half-positional over finite
 1-player graphs ⇒ L ∈ C
- ▶ $L \in C \implies L$ half-positional



Goal: *L* half-positional iff $L \in C$.

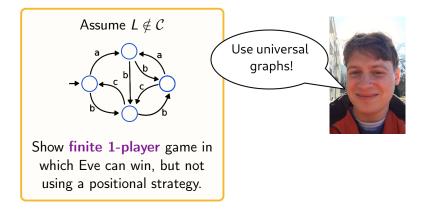
- L half-positional over finite
 1-player graphs ⇒ L ∈ C
- ▶ $L \in C \implies L$ half-positional



Goal: *L* half-positional iff $L \in C$.

L half-positional over finite
 1-player graphs ⇒ L ∈ C

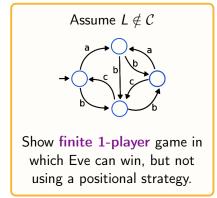
▶ $L \in C \implies L$ half-positional



Goal: *L* half-positional iff $L \in C$.

L half-positional over finite
 1-player graphs ⇒ L ∈ C

▶
$$L \in C \implies L$$
 half-positional

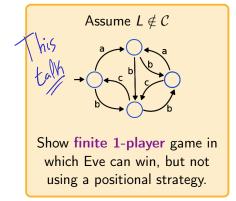


∃ Well-ordered monotone L-universal graph ↓ L is half-positional

Goal: *L* half-positional iff $L \in C$.

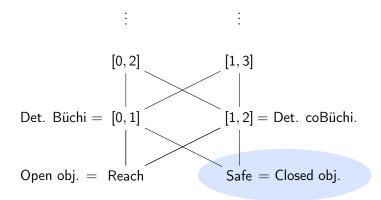
L half-positional over finite
 1-player graphs ⇒ L ∈ C

▶
$$L \in C \implies L$$
 half-positional



∃ Well-ordered monotone L-universal graph ↓ L is half-positional

Closed objectives



Residuals

We fix an language $L \subseteq \Sigma^{\omega}$.

For a finite word
$$u \in \Sigma^*$$
 we write
 $u^{-1}L = \{w \in \Sigma^\omega \mid uw \in L\}.$
 $\mathsf{Res}(L) = \mathsf{Residuals of } L.$

 \rightarrow We consider Res(L) ordered by inclusion.

Proposition

If $L \subseteq \Sigma^{\omega}$ is half-positional, then Res(L) is totally ordered by inclusion.

If L is topologically closed, this condition is also sufficient.

Proposition

If $L \subseteq \Sigma^{\omega}$ is half-positional, then Res(L) is totally ordered by inclusion.

If L is topologically closed, this condition is also sufficient.

Proof (necessity):

On the contrary, there are $u_1, u_2 \in \Sigma^*$ and $w_1, w_2 \in \Sigma^{\omega}$ such that:

 $u_1w_1 \in L, \quad u_2w_1 \notin L,$ $u_2w_2 \in L, \quad u_1w_2 \notin L.$

Proposition

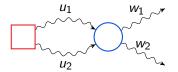
If $L \subseteq \Sigma^{\omega}$ is half-positional, then Res(L) is totally ordered by inclusion.

If L is topologically closed, this condition is also sufficient.

Proof (necessity):

On the contrary, there are $u_1, u_2 \in \Sigma^*$ and $w_1, w_2 \in \Sigma^{\omega}$ such that:

$$u_1w_1 \in L, \quad u_2w_1 \notin L,$$
$$u_2w_2 \in L, \quad u_1w_2 \notin L.$$



Proposition

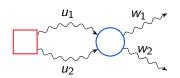
If $L \subseteq \Sigma^{\omega}$ is half-positional, then Res(L) is totally ordered by inclusion.

If L is topologically closed, this condition is also sufficient.

Proof (necessity):

On the contrary, there are $u_1, u_2 \in \Sigma^*$ and $w_1, w_2 \in \Sigma^{\omega}$ such that:

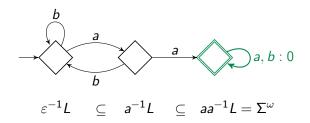
$$u_1 w_1 \in L$$
, $u_2 w_1 \notin L$,
 $u_2 w_2 \in L$, $u_1 w_2 \notin L$.



We can wake it • finite • 1-player

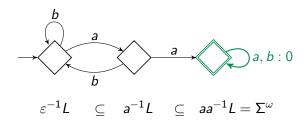
Example: Total order not sufficient in general

 $L = \{ w \in \Sigma^{\omega} \mid w \text{ contains the factor } aa \}.$



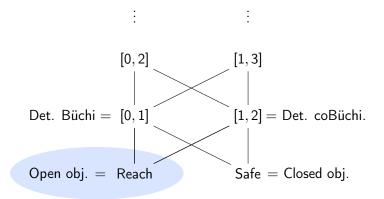
Example: Total order not sufficient in general

 $L = \{ w \in \Sigma^{\omega} \mid w \text{ contains the factor } aa \}.$



However:

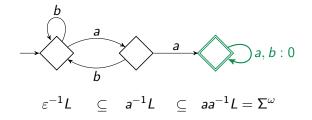
Open objectives



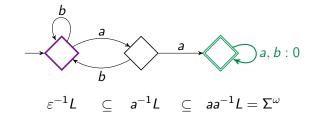
Language *L* is *progress consistent* if for all $u, v \in \Sigma^*$:

$$u^{-1}L \subsetneq uv^{-1}L \implies uv^{\omega} \in L.$$

Language *L* is *progress consistent* if for all
$$u, v \in \Sigma^*$$
:
 $u^{-1}L \subsetneq uv^{-1}L \implies uv^{\omega} \in L.$

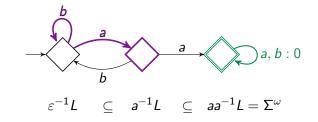


Language *L* is *progress consistent* if for all
$$u, v \in \Sigma^*$$
:
 $u^{-1}L \subsetneq uv^{-1}L \implies uv^{\omega} \in L.$



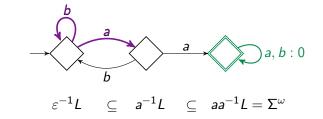
 $u = \varepsilon$,

Language *L* is *progress consistent* if for all
$$u, v \in \Sigma^*$$
:
 $u^{-1}L \subsetneq uv^{-1}L \implies uv^{\omega} \in L.$



 $u = \varepsilon$, v = ba

Language *L* is *progress consistent* if for all
$$u, v \in \Sigma^*$$
:
 $u^{-1}L \subsetneq uv^{-1}L \implies uv^{\omega} \in L.$



 $u = \varepsilon$, v = ba, but $(ba)^{\omega} \notin L \implies L$ not progress consistent.

Proposition

If L is half-positional, then it is progress consistent.

Proposition

If L is half-positional, then it is progress consistent.

Proof:

Let u, v such that $u^{-1}L \subsetneq uv^{-1}L$ but $uv^{\omega} \notin L$.

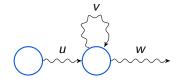
There is $w \in \Sigma^{\omega}$ s.t. $uw \notin L$ but $uvw \in L$.

Proposition

If L is half-positional, then it is progress consistent.

Proof:

Let u, v such that $u^{-1}L \subsetneq uv^{-1}L$ but $uv^{\omega} \notin L$. There is $w \in \Sigma^{\omega}$ s.t. $uw \notin L$ but $uvw \in L$.

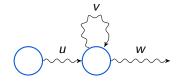


Proposition

If L is half-positional, then it is progress consistent.

Proof:

Let u, v such that $u^{-1}L \subsetneq uv^{-1}L$ but $uv^{\omega} \notin L$. There is $w \in \Sigma^{\omega}$ s.t. $uw \notin L$ but $uvw \in L$.

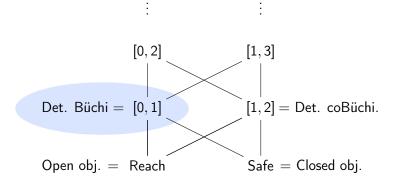


Proposition

If L is topologically open, it is half-positional if and only if:

- 1. Total order of residuals, and
- 2. Progress consistent.

Objectives recognized by deterministic Büchi automata



Proposition

Let L be recognizable by a deterministic Büchi automaton. L is half-positional if and only if:

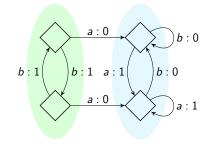
- 1. Total order of residuals,
- 2. Progress consistent,
- **3**. Can be recognized by the automaton of residuals (one state per residual).

Proposition

Let L be recognizable by a deterministic Büchi automaton. L is half-positional if and only if:

- 1. Total order of residuals,
- 2. Progress consistent,
- **3.** Can be recognized by the automaton of residuals (one state per residual).

One idea. Uniformity of 0-transitions:

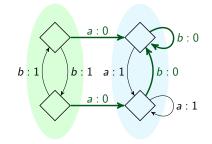


Proposition

Let L be recognizable by a deterministic Büchi automaton. L is half-positional if and only if:

- 1. Total order of residuals,
- 2. Progress consistent,
- **3.** Can be recognized by the automaton of residuals (one state per residual).

One idea. Uniformity of 0-transitions:

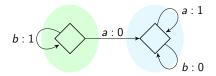


Proposition

Let L be recognizable by a deterministic Büchi automaton. L is half-positional if and only if:

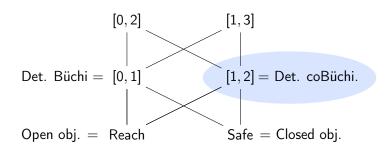
- 1. Total order of residuals,
- 2. Progress consistent,
- **3.** Can be recognized by the automaton of residuals (one state per residual).

One idea. Uniformity of 0-transitions:

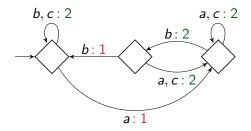


Objectives recognized by deterministic coBüchi automata

÷

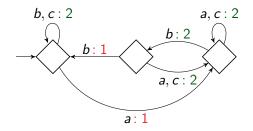


Example: Objective recognized by coBüchi automaton



$$\mathcal{L}(\mathcal{A}) = extsf{Fin}(a) \lor extsf{Fin}(bb)$$

Example: Objective recognized by coBüchi automaton



 $\mathcal{L}(\mathcal{A}) = \operatorname{Fin}(a) \lor \operatorname{Fin}(bb)$

- Only one residual (prefix-independent)
- Claim: Half-positional

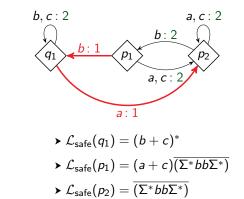
Safe languages and safe components

For a state q we write: $\mathcal{L}_{\mathsf{safe}}(q) = \{ w \in \Sigma^* \mid \text{ the path } q \xrightarrow{w} \text{ does not produce } 1 \}.$

Safe languages and safe components

For a state q we write:

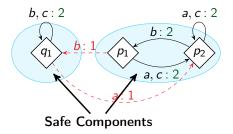
 $\mathcal{L}_{\mathsf{safe}}(q) = \{ w \in \Sigma^* \mid \text{ the path } q \xrightarrow{w} \text{ does not produce } 1 \}.$



Safe languages and safe components

For a state q we write:

$$\mathcal{L}_{\mathsf{safe}}(q) = \{ w \in \Sigma^* \mid \text{ the path } q \xrightarrow{w} \text{ does not produce } 1 \}.$$



CoBüchi: Total order in safe components

Claim

If $\mathcal{L}(\mathcal{A})$ is half-positional, the states of each safe component are totally ordered by inclusion of safe languages.

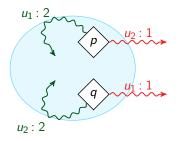
CoBüchi: Total order in safe components

Claim

If $\mathcal{L}(\mathcal{A})$ is half-positional, the states of each safe component are totally ordered by inclusion of safe languages.

(Not a) proof:

On the contrary, there are states p,q and words $u_1,u_2\in\Sigma^*$ s.t.:



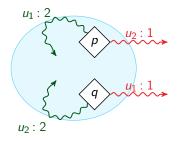
CoBüchi: Total order in safe components

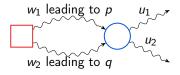
Claim

If $\mathcal{L}(\mathcal{A})$ is half-positional, the states of each safe component are totally ordered by inclusion of safe languages.

(Not a) proof:

On the contrary, there are states p, q and words $u_1, u_2 \in \Sigma^*$ s.t.:





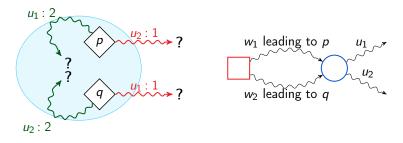
CoBüchi: Total order in safe components

Claim

If $\mathcal{L}(\mathcal{A})$ is half-positional, the states of each safe component are totally ordered by inclusion of safe languages.

(Not a) proof:

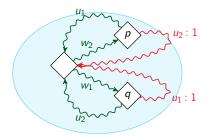
On the contrary, there are states p,q and words $u_1,u_2\in\Sigma^*$ s.t.:

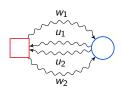


And now what? We need to iterate this process.

Synchronizing words

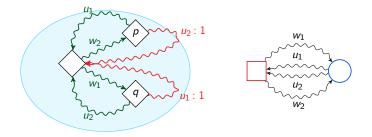
Objective: Obtain words giving the following situation





Synchronizing words

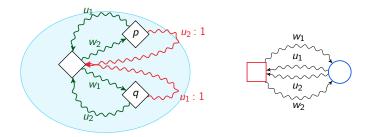
Objective: Obtain words giving the following situation



An arbitrary automaton does not admit synchronizing words.

Synchronizing words

Objective: Obtain words giving the following situation



An arbitrary automaton does not admit synchronizing words.

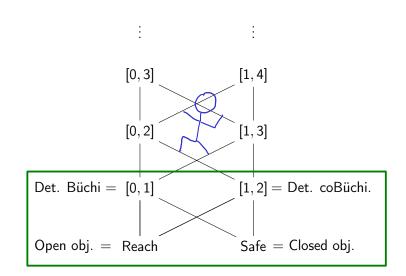
But we can obtain a minimal history-deterministic* automaton which always admits synchronizing words![†]

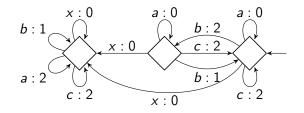
*History-deterministic = Good-for games

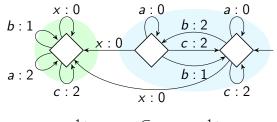
[†]Minimization method from Abu Radi and Kupferman

"Minimizing GFG Transition-Based Automata" ICALP 2019.

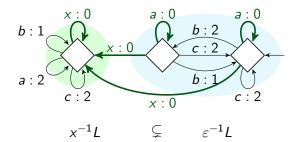
Climbing the ladder



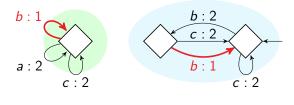




- $x^{-1}L \qquad \subsetneq \qquad \varepsilon^{-1}L$
- \blacktriangleright Residuals totally ordered \checkmark
- \blacktriangleright Progress consistency \checkmark

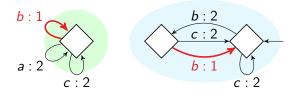


- \blacktriangleright Residuals totally ordered \checkmark
- \blacktriangleright Progress consistency \checkmark
- Uniformity of 0-transitions \checkmark



 $x^{-1}L \qquad \subsetneq \qquad \varepsilon^{-1}L$

- \blacktriangleright Residuals totally ordered \checkmark
- \blacktriangleright Progress consistency \checkmark
- Uniformity of 0-transitions \checkmark
- \blacktriangleright Total order of safe languages \checkmark



 $x^{-1}L \qquad \subsetneq \qquad \varepsilon^{-1}L$

- \blacktriangleright Residuals totally ordered \checkmark
- Progress consistency
- Uniformity of 0-transitions \checkmark
- \blacktriangleright Total order of safe languages \checkmark

Final characterization

Idea:

L half-positional \iff

 \boldsymbol{L} can be recognized by a parity automaton admitting a decomposition by layers

Final characterization

Idea:

L half-positional \iff

L can be recognized by a parity automaton admitting a decomposition by layers

> Formal details quite technical

Deciding half-positionality in polynomial time

Input: Deterministic parity automaton \mathcal{A} .

 \rightarrow Apply a sequence of transformations to $\mathcal A$

Deciding half-positionality in polynomial time

Input: Deterministic parity automaton \mathcal{A} .

 \rightarrow Apply a sequence of transformations to $\mathcal A$

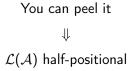
You can peel it

 \Downarrow $\mathcal{L}(\mathcal{A})$ half-positional

Deciding half-positionality in polynomial time

Input: Deterministic parity automaton \mathcal{A} .

 \rightarrow Apply a sequence of transformations to $\mathcal A$



You cannot peel it ↓ It is a coconut

Advancement in the understanding of the structure of ω-automata

 Advancement in the understanding of the structure of ω-automata

Critical use of transition-based acceptance

- Advancement in the understanding of the structure of ω-automata
- Critical use of transition-based acceptance
- Unexpected appearance of history-deterministic automata!

- Advancement in the understanding of the structure of ω-automata
- Critical use of transition-based acceptance
- Unexpected appearance of history-deterministic automata!
- Use of universal graphs to show positionality

- Advancement in the understanding of the structure of ω-automata
- Critical use of transition-based acceptance
- Unexpected appearance of history-deterministic automata!
- Use of universal graphs to show positionality

Thanks for your attention!

