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Positional Strategies

A positional strategy (for Eve) is a mapping:

σ : VEve → E .

The positional strategy above ensures the language

L = Words containing the factor bc infinitely often = Inf(bc).



Example: Positional strategies do not always suffice

ab

L = Inf(a) ∧ Inf(b)

Eve wins, but not positionally.
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A language L is half-positional if, for every (finite) game G
using L as winning condition:

Eve can win G =⇒ She can win using a positional strategy.

Bipositionality

A language L is bipositional if both L and Σω \ L are
half-positional.
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*This is of course not true. There are many very interesting results about
half-positionality.
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Questions About Half Positionality

Kopczyński’s Conjecture (2006)

Let L1 and L2 be two prefix-independent half-positional lan-
guages. Then:

L1 ∪ L2 is half-positional.

� Does not hold for finite graphs (Kozachinskiy, 2022).

Non ω-regular counterexample!

� Open for infinite graphs.
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Main Contribution

Characterization of half-positional ω-regular languages
We identify a class C of deterministic parity automata such that:

� A ∈ C =⇒ L(A) is half-positional.

� L half-positional =⇒ L can be recognized by some A ∈ C.
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Corollaries the Characterization

Kopczyński’s Conjecture for ω-regular languages

Let L1 and L2 be two prefix-independent, ω-regular, half-
positional languages. Then:

L1 ∪ L2 is half-positional.



Corollaries the Characterization

Kopczyński’s Conjecture for ω-regular languages

Let L1 and L2 be two prefix-independent, ω-regular, half-
positional languages. Then:

L1 ∪ L2 is half-positional.

Ohlmann’s Neutral Letter Conjecture for ω-regular languages

For L an ω-regular language:

L half-positional ⇐⇒ (L+neutral letter) is half-positional.
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How to prove a characterization of
positionality?
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Residuals

We fix an language L ⊆ Σω.

For a finite word u ∈ Σ∗ we write

u−1L = {w ∈ Σω | uw ∈ L}.

Res(L) = Residuals of L.

� We consider Res(L) ordered by inclusion.
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Example: Total order not sufficient in general

L = {w ∈ Σω | w contains the factor aa}.

ε−1L ⊆ a−1L ⊆ aa−1L = Σω

a

b

a

b

a, b : 0

However:

ab ba
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Progress consistency

Language L is progress consistent if for all u, v ∈ Σ∗:

u−1L � uv−1L =⇒ uvω ∈ L.

ε−1L ⊆ a−1L ⊆ aa−1L = Σω

a

b

a

b

a, b : 0

b

a

u = ε, v = ba , but (ba)ω /∈ L =⇒ L not progress consistent.
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Open objectives: Progress consistency + Total order

Proposition
If L is half-positional, then it is progress consistent.

Proof:
Let u, v such that u−1L � uv−1L but uvω /∈ L.
There is w ∈ Σω s.t. uw /∈ L but uvw ∈ L.

u

v

w

Proposition
If L is topologically open, it is half-positional if and only if:
1. Total order of residuals, and
2. Progress consistent.
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Proposition
Let L be recognizable by a deterministic Büchi automaton. L is
half-positional if and only if:
1. Total order of residuals,
2. Progress consistent,
3. Can be recognized by the automaton of residuals (one state

per residual).

One idea. Uniformity of 0-transitions:
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Objectives recognized by deterministic coBüchi automata

Reach Safe
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b, c : 2
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Example: Objective recognized by coBüchi automaton

a : 1

b, c : 2

b : 1

a, c : 2

b : 2
a, c : 2

L(A) = Fin(a) ∨ Fin(bb)

� Only one residual (prefix-independent)
� Claim: Half-positional
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For a state q we write:

Lsafe(q) = {w ∈ Σ∗ | the path q
w does not produce 1}.

q1 p1 p2

b, c : 2

a, c : 2

b : 2
a, c : 2

a : 1

b : 1

] Lsafe(q1) = (b + c)∗

] Lsafe(p1) = (a+ c)(Σ∗bbΣ∗)

] Lsafe(p2) = (Σ∗bbΣ∗)



Safe languages and safe components

For a state q we write:

Lsafe(q) = {w ∈ Σ∗ | the path q
w does not produce 1}.

Safe Components

q1 p1 p2

b, c : 2

a, c : 2

b : 2
a, c : 2

a : 1

b : 1
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CoBüchi: Total order in safe components

Claim
If L(A) is half-positional, the states of each safe component are
totally ordered by inclusion of safe languages.

(Not a) proof:

On the contrary, there are states p, q and words u1, u2 ∈ Σ∗ s.t.:

q

p

u1 : 1

u2 : 1

u2 : 2

u1 : 2

w1 leading to p

w2 leading to q

u1

u2

?

?
?
?

And now what? We need to iterate this process.
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Synchronizing words

Objective: Obtain words giving the following situation

p

q

u2 : 1

u1 : 1

u2

u1

w1

w2
w1

w2

u1

u2

� An arbitrary automaton does not admit synchronizing words.
� But we can obtain a minimal history-deterministic*

automaton which always admits synchronizing words!�

*History-deterministic = Good-for games
�Minimization method from Abu Radi and Kupferman

“Minimizing GFG Transition-Based Automata” ICALP 2019.
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•

•
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Final characterization

Idea:

L half-positional ⇐⇒ L can be recognized by a parity automa-
ton admitting a decomposition by layers

] Formal details quite technical
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Deciding half-positionality in polynomial time

Input: Deterministic parity automaton A.

� Apply a sequence of transformations to A

You can peel it

⇓
L(A) half-positional

You cannot peel it

⇓
It is a coconut
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Conclusions

� Advancement in the understanding of the structure of
ω-automata

� Critical use of transition-based acceptance

� Unexpected appearance of history-deterministic automata!

� Use of universal graphs to show positionality

Thanks for your attention!


