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» Players move a token in turns producing an infinite word
w e XY,

» The winning condition is given by a language L C ¥¢.

» Eve wins if the sequence w € L produced belongs to L.



Positional Strategies

4@5

e fj?

A positional strategy (for Eve) is a mapping:

o: VE\,e—>E.




Positional Strategies

@j

e fj?

A positional strategy (for Eve) is a mapping:

o: VEve_>E'

The positional strategy above ensures the language

L = Words containing the factor bc infinitely often = Inf(bc).



Example: Positional strategies do not always suffice

. CCD:-
L = Inf(a) A Inf(b)

Eve wins, but not positionally.



Positional Languages

Half-positionality

A language L is half-positional if, for every game G using L
as winning condition:

Eve can win G = She can win using a positional strategy.
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Positional Languages

Half-positionality

A language L is half-positional if, for every (finite) game G
using L as winning condition:

Eve can win G = She can win using a positional strategy.

Bipositionality

A language L is bipositional if both L and X\ L are
half-positional.
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What do we already know?



Known Results About Bipositionality



Known Results About Bipositionality

Bipositionality over finite graphs

» Characterization of bipositionality over finite graphs (Gimbert,
Zielonka 2005).



Known Results About Bipositionality

Bipositionality over finite graphs
» Characterization of bipositionality over finite graphs (Gimbert,
Zielonka 2005).

» Corollary: L is bipositional if and only if Eve and Adam can
win positionally in 1-player games.



Known Results About Bipositionality

Bipositionality over finite graphs

» Characterization of bipositionality over finite graphs (Gimbert,
Zielonka 2005).

» Corollary: L is bipositional if and only if Eve and Adam can
win positionally in 1-player games.
\\> 4-— to-2 Pfager

Gipt



Known Results About Bipositionality

Bipositionality over finite graphs
» Characterization of bipositionality over finite graphs (Gimbert,
Zielonka 2005).

» Corollary: L is bipositional if and only if Eve and Adam can
win positionally in 1-player games.

Bipositionality over infinite graphs

» Characterization of bipositionality over infinite graphs
(Colcombet, Niwinski 2006).

For L prefix-independent:
L is bipositional <= L is the parity objective.



Known Results About Bipositionality

Bipositionality over finite graphs

» Characterization of bipositionality over finite graphs (Gimbert,
Zielonka 2005).

» Corollary: L is bipositional if and only if Eve and Adam can
win positionally in 1-p! XS,

Bipositionality over infi
» Characterization of bip. .y over infinite graphs
(Colcombet, Niwinski 2006).
For L prefix-independent:
L is bipositional <= L is the parity objective.
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*This is of course not true. There are many very interesting results about
half-positionality.
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What do we know about half-positionality?

Decidability for finite graphs (Kopczynski 2007)
The following problem is decidable in time O(n"):

Input: DPA A recognising a prefix-independent language.
Question: L(.A) half-positional over finite graphs?

Characterization via universal graphs (Ohlmann 2022)

L is half-positional over all graphs :
L A E T
&) iff « el
L admits well-ordered monotone universal graphs. {otler
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Questions About Half Positionality

Kopczynski's Conjecture (2006)

Let L; and L, be two prefix-independent half-positional lan-
guages. Then:

L1 U Ly is half-positional.

» Does not hold for finite graphs (Kozachinskiy, 2022).

Non w-regular counterexample!

» Open for infinite graphs.



Contributions



Main Contribution

Characterization of half-positional w-regular languages
We identify a class C of deterministic parity automata such that:

» AcC = L(A) is half-positional.

» [ half-positional = L can be recognized by some A € C.
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Corollaries the Characterization

Kopczynski's Conjecture for w-regular languages

Let L1 and L, be two prefix-independent, w-regular, half-
positional languages. Then:

L1 U Ly is half-positional.

Ohlmann’s Neutral Letter Conjecture for w-regular languages

For L an w-regular language:

L half-positional <= (L+ neutral letter) is half-positional.
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A characterization of
half positionality

But... What is this
characterization?




Let's dive
into it!




Towards the characterization
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A hierarchy of languages

This  work

. [1,2] = Det. coBiichi.
Safe = Closed obj.

COQLDM‘DeJ[ ’ ﬁjﬂ@k”’/ Hovw/ 204—“

Open obj. = Reach
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2024
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How to prove a characterization of
positionality?
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C a class of languages.

Goal: L half-positional iff L € C.

» L half-positional over finite » L €C = L half-positional
1-player graphs — Le(C

Assume L ¢ C

/<\(§‘9 a/’O‘N 3 Well-ordered monotone

L-universal graph

QJ \|%

.. ] L is half-positional
Show finite 1-player game in

which Eve can win, but not
using a positional strategy.
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Residuals

We fix an language L C X¥.

7

For a finite word u € * we write
vl ={wex¥|uwe L}

Res(L) = Residuals of L.

> We consider Res(L) ordered by inclusion.
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However:
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Progress consistency

Language L is progress consistent if for all u,v € ¥*:

v iLCw i = w¥ el

b
a

Lo

el c all C aalL=3%¥

u=¢e, v=hbha,but(ba)”¢ L = L not progress consistent.
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Open objectives: Progress consistency + Total order

Proposition
If L is half-positional, then it is progress consistent.

Proof:
Let u, v such that u=*L C uv™1L but uv® ¢ L.
Thereis w € X% s.t. uw ¢ L but uvw € L.

OO

Proposition
If L is topologically open, it is half-positional if and only if:
1. Total order of residuals, and

2. Progress consistent.
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Deterministic Biichi: Uniformity of O-transitions
Proposition
Let L be recognizable by a deterministic Biichi automaton. L is
half-positional if and only if:
1. Total order of residuals,

2. Progress consistent,
3. Can be recognized by the automaton of residuals (one state

per residual).

One idea. Uniformity of O-transitions:

a:1
a:0

b:0
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Example: Objective recognized by coBiichi automaton

L(A) = Fin(a) V Fin(bb)

» Only one residual (prefix-independent)
» Claim: Half-positional
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Safe languages and safe components

For a state g we write:

Leare(q) = {w € £* | the path ¢ > does not produce 1}.

> Esafe(ql) = (b + C)*
> Laate(p1) = (a+ ¢)(X*bbT*)
> Esafe(p2) = (Z*be*)




Safe languages and safe components

For a state g we write:

Leate(q) = {w € £* | the path ¢ > does not produce 1}.

b,c:2 a,c:2
b:2
s a,c:2’

Safe Components
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CoBiichi: Total order in safe components

Claim
If £(A) is half-positional, the states of each safe component are
totally ordered by inclusion of safe languages.

(Not a) proof:
On the contrary, there are states p, g and words vy, up € X* s.t.:
uyg

wy leading to p n

wy leading to ¢

And now what? We need to iterate this process.
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Synchronizing words

Objective: Obtain words giving the following situation

» An arbitrary automaton does not admit synchronizing words.

> But we can obtain a minimal history-deterministic”
automaton which always admits synchronizing words!*

*History-deterministic = Good-for games
TMinimization method from Abu Radi and Kupferman
“Minimizing GFG Transition-Based Automata” ICALP 2019.



Climbing the ladder

[0, 3] [1,4]
[0,2] [1,3]
Det. Biichi = [0, 1] [1,2] = Det. coBiichi.

Open obj. = Reach Safe = Closed obj.
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> Uniformity of O-transitions v

» Total order of safe languages v
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Idea:

L can be recognized by a parity automa-

L half-positional <= L -
ton admitting a decomposition by layers

» Formal details quite technical
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Deciding half-positionality in polynomial time

Input: Deterministic parity automaton A.

> Apply a sequence of transformations to A

=N\ /7

You can peel it You cannot peel it

4 4

L(.A) half-positional It is a coconut
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» Critical use of transition-based acceptance
» Unexpected appearance of history-deterministic automata!

» Use of universal graphs to show positionality

Thanks for your attention!



