On a Correspondence Between Memory Structures for Muller Games and Rabin Automata

Antonio Casares

Séminaire de l'équipe MOVE

2 December 2021

Based in work with Thomas Colcombet and Karoliina Lehtinen.

Memory Structures For Muller Games

2 Deterministic Rabin Automata and Independent Memory

Good-For-Games Rabin Automata and General Memory

Index

2 Deterministic Rabin Automata and Independent Memory

Infinite Duration Games

$$\mathcal{G} = (V = V_{\mathrm{Eve}} \biguplus V_{\mathrm{Adam}}, v_0, E)$$

Players move a token in turns producing an infinite word $w \in \{a, b, c\}^{\omega}$.

Muller Conditions

 $C \rightarrow$ Set of colours (for example, $C = \{a, b, c\}$).

Muller condition: Family of subsets of colours $\mathcal{F} \subseteq 2^{\mathcal{C}}$.

An infinite word $w \in \mathcal{C}^{\omega}$ belongs to the Muller condition if

 $Inf(w) \in \mathcal{F}.$

Example

Produce both "a" and "c" infinitely often:

$$\mathcal{F} = \{ \{a, c\}, \{a, b, c\} \}.$$

Muller Games

Muller condition:

$$\mathcal{F} = \{ \{a, c\}, \{a, b, c\} \}.$$

Figure: \mathcal{F} -game

Eve wins if the produced word $w \in \mathcal{C}^{\omega}$ verifies

 $Inf(w) \in \mathcal{F}.$

Memory Structures For Muller Games

Muller Games Might Require Memory

$$\mathcal{F} = \{\{a, b\}\}.$$

Eve can force a victory, but she needs to remember previous moves.

 \rightarrow We use memory structures.

- Set of states M + initial state.
- $\mu: M \times E \rightarrow M$, update function.
- next-move: $M \times V_{\mathrm{Eve}} \to E$, gives a strategy.

- Set of states *M*.
- $\mu: M \times E \rightarrow M$, update function.
- next-move: $M \times V_{\mathrm{Eve}} \to E$, gives a strategy.

Output =

- Set of states *M*.
- $\mu: M \times E \rightarrow M$, update function.
- next-move: $M imes V_{\mathrm{Eve}} o E$, gives a strategy.

Output = a

- Set of states *M*.
- $\mu: M \times E \rightarrow M$, update function.
- next-move: $M \times V_{\mathrm{Eve}} \to E$, gives a strategy.

Output = ab

 $\mathcal{F} = \{ \{a, c\}, \{a, b, c\} \}.$

- Set of states *M*.
- $\mu: M \times E \rightarrow M$, update function.
- next-move: $M \times V_{\mathrm{Eve}} \to E$, gives a strategy.

Output = abc

 $\mathcal{F} = \{ \{a, c\}, \{a, b, c\} \}.$

- Set of states *M*.
- µ: M × E → M, update function.
- next-move: $M imes V_{\mathrm{Eve}} o E$, gives a strategy.

Output = *abcb*...

 $\mathcal{F} = \{ \{a, c\}, \{a, b, c\} \}.$

- Set of states *M*.
- $\mu: M \times E \to M$, update function.
- next-move: $M imes V_{\mathrm{Eve}} o E$, gives a strategy.

Chromatic Memory Structures

- Set of states M.
- $\mu: M \times \mathcal{C} \to M$, update function.
- next-move: $M imes V_{\mathrm{Eve}} o E$, gives a strategy.

Arena-Independent Memory Structures

We fix a Muller condition \mathcal{F} .

- Set of states *M*.
- $\mu \colon M \times \mathcal{C} \to M$, update function.

Memory structure $\mathcal{M} = (M, m_0, \mu)$.

The memory \mathcal{M} is arena-independent if for every \mathcal{F} -game \mathcal{G} won by Eve, there is a winning strategy given by some function

 $\texttt{next-move}_{\mathcal{G}} \colon M \times \mathit{V}_{\mathrm{Eve}} \to \mathit{E}.$

Muller games are finite-memory determined

Theorem (Gurevich, Harrington '82)

Every Muller condition \mathcal{F} admits a finite arena-independent memory structure.

 \rightarrow A deterministic parity (or Rabin) automaton recognizing the Muller condition gives an arena-independent memory.

We fix a set of colours ${\mathcal C}$ and a Muller condition ${\mathcal F}\subseteq 2^{{\mathcal C}}.$

$egin{array}{l} {\sf General \ Memory} \ {\sf Requirements} \end{array} = \mathfrak{mem}_{gen}(\mathcal{F})$	Minimal n such that for any \mathcal{F} -game won by Eve, she can win it using a general memory of size n .
$egin{array}{c} {\sf Chromatic Memory} \ {\sf Requirements} \end{array} = \mathfrak{mem}_{chr}(\mathcal{F}) \end{array}$	Minimal n such that for any \mathcal{F} -game won by Eve, she can win it using a chromatic memory of size n .
$egin{array}{llllllllllllllllllllllllllllllllllll$	Minimal size of an arena-independent memory for \mathcal{F} .

$egin{array}{l} {\sf General Memory} \ {\sf Requirements} \end{array} = \mathfrak{mem}_{gen}(\mathcal{F}) \end{array}$	Minimal n such that for any \mathcal{F} -game won by Eve, she can win it using a general memory of size n .
$egin{array}{l} {\sf Chromatic Memory} \ {\sf Requirements} \end{array} = \mathfrak{mem}_{chr}(\mathcal{F}) \end{array}$	Minimal n such that for any \mathcal{F} -game won by Eve, she can win it using a chromatic memory of size n .
$egin{array}{llllllllllllllllllllllllllllllllllll$	Minimal size of an arena-independent memory for \mathcal{F} .

 $\mathfrak{mem}_{gen}(\mathcal{F}) \leq \mathfrak{mem}_{chr}(\mathcal{F}) \leq \mathfrak{mem}_{ind}(\mathcal{F})$

$egin{array}{l} {\sf General Memory} \ {\sf Requirements} \end{array} = \mathfrak{mem}_{gen}(\mathcal{F})$	Minimal n such that for any \mathcal{F} -game won by Eve, she can win it using a general memory of size n .
$egin{array}{l} {\sf Chromatic Memory} \ {\sf Requirements} \end{array} = \mathfrak{mem}_{chr}(\mathcal{F}) \end{array}$	Minimal n such that for any \mathcal{F} -game won by Eve, she can win it using a chromatic memory of size n .
$egin{array}{llllllllllllllllllllllllllllllllllll$	Minimal size of an arena-independent memory for \mathcal{F} .

$$\mathfrak{mem}_{gen}(\mathcal{F}) \stackrel{C.'21}{<} \mathfrak{mem}_{chr}(\mathcal{F}) \stackrel{Kopczynski'08}{=} \mathfrak{mem}_{ind}(\mathcal{F})$$

Contributions

 $\mathcal C$ set of colours, $\mathcal F\subseteq 2^{\mathcal C}.$

$$\mathfrak{mem}_{chr}(\mathcal{F}) = \mathfrak{mem}_{ind}(\mathcal{F}) =$$
Size of a minimal deterministic Rabin automaton recognizing \mathcal{F} .

$$\mathfrak{mem}_{gen}(\mathcal{F}) = \begin{array}{c} \text{Size of a minimal Good-For-Games} \\ \text{Rabin automaton recognizing } \mathcal{F}. \end{array}$$

→ The gap between $\mathfrak{mem}_{gen}(\mathcal{F})$ and $\mathfrak{mem}_{chr}(\mathcal{F})$ can be exponential in $|\mathcal{C}|$.

Index

2 Deterministic Rabin Automata and Independent Memory

3 Good-For-Games Rabin Automata and General Memory

Rabin Conditions

Class of Muller conditions $\mathcal{F} \subseteq 2^{\mathcal{C}}$ defined by:

A set of Rabin pairs:

Each colour in C triggers one light for each Rabin pair P_i :

We accept a word $w \in C^{\omega}$ if some P_i produces infinitely often green and only finitely many times red.

Rabin Conditions

Example

"See at most two colours infinitely often" is a Rabin condition:

$$\mathcal{F} = \{ \{a\}, \{b\}, \{c\} \{a, b\}, \{a, c\}, \{b, c\} \}.$$

Rabin Conditions

Theorem (Klarlund'94, Zielonka'98)

Rabin conditions are exactly the family of Muller conditions that are **positionally determined**¹ (that is, if Eve wins a Rabin game, she can win it using a memoryless strategy).

¹"Positional" will mean "positional from the point of view of Eve" in this talk. This is sometimes called "half-positional".

Rabin Automata

Input alphabetOutput alphabet $\mathcal{C} = \{a, b\}.$ $\mathcal{C}' = \{\alpha, \beta, \gamma\}.$

Acceptance condition \rightarrow Rabin condition over C'.

The automaton ${\mathcal A}$ recognizes a Muller condition ${\mathcal F}$ over ${\mathcal C}$ if

 $\mathcal{L}(\mathcal{A}) = \{ w \in \mathcal{C}^{\omega} : Inf(w) \in \mathcal{F} \}.$

Rabin Automata are Arena-Independent Memories

Proposition (Folklore)

If \mathcal{A} is a deterministic Rabin automata recognizing a Muller condition \mathcal{F} , then \mathcal{A} is an arena-independent memory for \mathcal{F} .

 \rightarrow We just have to show how to define a next-move function.

Rabin Automata are Arena-Independent Memories

Rabin Automata are Arena-Independent Memories

We can transform a positional strategy in $\mathcal{G} \ltimes \mathcal{A}$ into a next-move function next-move $_{\mathcal{G}} \colon \mathcal{A} \times V_{\mathrm{Eve}} \to E$.

Arena-Independent Memories are Deterministic Rabin Automata

Theorem (C. '21)

If \mathcal{M} is an arena-independent memory for \mathcal{F} , then we can define a Rabin condition on top of it so that it becomes a deterministic Rabin automaton recognizing \mathcal{F} .

Corollary

 $\mathfrak{mem}_{chr}(\mathcal{F}) = Size \text{ of a minimal deterministic Rabin automaton for } \mathcal{F}.$

Corollary

Determining $\mathfrak{mem}_{chr}(\mathcal{F})$ is NP-complete, even if the condition \mathcal{F} is represented "quite explicitly".

Index

Deterministic Rabin Automata and Independent Memory

Good-For-Games Rabin Automata and General Memory

Good-For-Games Automata

 $\begin{array}{ccc} \mathcal{G} \rightarrow & \mathcal{F}\text{-game} \\ \\ \mathcal{A} \rightarrow & \begin{array}{c} \text{Non-Deteterministic} \\ \\ \text{Automaton for } \mathcal{F}. \end{array} \right\}$

 $\mathcal{G} \ltimes \mathcal{A}, \text{ but the winner is not} \\ necessarily preserved!$

Good-For-Games Automata

 $\begin{array}{ccc} \mathcal{G} \rightarrow & \mathcal{F}\text{-game} \\ \\ \mathcal{A} \rightarrow & \begin{array}{c} \text{Non-Deteterministic} \\ \\ \text{Automaton for } \mathcal{F}. \end{array} \end{array} \right\}$

 $\mathcal{G} \ltimes \mathcal{A}, \text{ but the winner is not} \\ necessarily preserved!$

Definition

 \mathcal{A} is Good-For-Games (GFG) if for every \mathcal{F} -game \mathcal{G} ,

Eve wins $\mathcal{G} \Leftrightarrow$ Eve wins $\mathcal{G} \ltimes \mathcal{A}$.

(Remark: in $\mathcal{G} \ltimes \mathcal{A}$ Eve chooses the transitions in \mathcal{A} .)

Good-For-Games Automata

 $\begin{array}{ccc} \mathcal{G} \rightarrow & \mathcal{F}\text{-game} \\ \\ \mathcal{A} \rightarrow & \begin{array}{c} \text{Non-Deteterministic} \\ \\ \text{Automaton for } \mathcal{F}. \end{array} \right\}$

 $\mathcal{G} \ltimes \mathcal{A}$, but the winner is not necessarily preserved!

Definition

 \mathcal{A} is Good-For-Games (GFG) if for every \mathcal{F} -game \mathcal{G} ,

Eve wins $\mathcal{G} \Leftrightarrow$ Eve wins $\mathcal{G} \ltimes \mathcal{A}$.

(Remark: in $\mathcal{G} \ltimes \mathcal{A}$ Eve chooses the transitions in \mathcal{A} .)

Facts

- Deterministic automata are Good-For-Games.
- There are Good-For-Games automata that are not deterministic.

Good-For-Games Automata as Memory Structures

 ${\mathcal A}$ a GFG-Rabin automaton for ${\mathcal F}.$

In $\mathcal{G}\ltimes\mathcal{A}$ Eve has a positional strategy. We transform this strategy into a next-move function

next-move_{$$\mathcal{G}$$}: $\mathcal{A} \times V_{Eve} \to E$.
So \mathcal{A} provides a(n) ? memory structure.

Good-For-Games Automata as Memory Structures

 ${\mathcal A}$ a GFG-Rabin automaton for ${\mathcal F}.$

In $\mathcal{G}\ltimes\mathcal{A}$ Eve has a positional strategy. We transform this strategy into a next-move function

$$\texttt{next-move}_{\mathcal{G}} \colon \mathcal{A} \times V_{\text{Eve}} \to E.$$

So \mathcal{A} provides a **general** memory structure.

The automaton is Non-Det, so we can take different transitions in \mathcal{A} when visiting different edges in \mathcal{G} (even if they have the same colour).

Good-For-Games Automata as Memory Structures

 ${\mathcal A}$ a GFG-Rabin automaton for ${\mathcal F}.$

In $\mathcal{G}\ltimes\mathcal{A}$ Eve has a positional strategy. We transform this strategy into a next-move function

$$\texttt{next-move}_\mathcal{G} \colon \mathcal{A} imes V_{ ext{Eve}} o \mathsf{E}.$$

Good-For-Games Automata Give Optimal Memory Structures

 $[DJW \ '97^2] \rightarrow Characterization of <math>\mathfrak{mem}_{gen}(\mathcal{F})$ in terms of the Zielonka tree of \mathcal{F} .

Using the Zielonka tree we give a construction of a GFG-Rabin automaton of size $\mathfrak{mem}_{gen}(\mathcal{F})$ recognizing \mathcal{F} .

²S. Dziembowski, M. Jurdziński and I. Walukiewicz, *How much memory is needed to win infinite games*?, LICS 1997.

Good-For-Games Automata Give Optimal Memory Structures

 $[DJW '97^2] \rightarrow Characterization of <math>\mathfrak{mem}_{gen}(\mathcal{F})$ in terms of the Zielonka tree of \mathcal{F} .

Using the Zielonka tree we give a construction of a GFG-Rabin automaton of size $\mathfrak{mem}_{gen}(\mathcal{F})$ recognizing \mathcal{F} .

Corollary (C., Colcombet, Lehtinen '21)

 $\mathfrak{mem}_{gen}(\mathcal{F}) =$ Size of a minimal GFG Rabin automaton for \mathcal{F} .

And we can construct one such minimal GFG Rabin automaton "efficiently"!

²S. Dziembowski, M. Jurdziński and I. Walukiewicz, *How much memory is needed to win infinite games?*, LICS 1997.

General Memory vs Chromatic Memory

Theorem (C., Colcombet, Lehtinen '21³)

There exists a constant c > 1 and a sequence of Muller conditions $\mathcal{F}_1, \ldots, \mathcal{F}_n \ldots$ over $\mathcal{C}_1, \ldots, \mathcal{C}_n \ldots$, $|\mathcal{C}_n| = n$ such that: • $\mathfrak{mem}_{gen}(\mathcal{F}_n) = n/2$. • $\mathfrak{mem}_{chr}(\mathcal{F}_n) = c^n$.

Corollary (C., Colcombet, Lehtinen '21)

The gap on the size between deterministic and GFG Rabin automata recognizing Muller conditions is exponential.

³Thanks to Marthe Bonamy and Pierre Fraigniaud for their help with graph theory!

General Memory vs Chromatic Memory

Theorem (C., Colcombet, Lehtinen '21³)

There exists a constant c > 1 and a sequence of Muller conditions $\mathcal{F}_1, \ldots, \mathcal{F}_n \ldots$ over $\mathcal{C}_1, \ldots, \mathcal{C}_n \ldots$, $|\mathcal{C}_n| = n$ such that: • $\mathfrak{mem}_{gen}(\mathcal{F}_n) = n/2$. • $\mathfrak{mem}_{chr}(\mathcal{F}_n) = c^n$.

Corollary (C., Colcombet, Lehtinen '21)

The gap on the size between deterministic and GFG Rabin automata recognizing Muller conditions is exponential.

Thank you!

³Thanks to Marthe Bonamy and Pierre Fraigniaud for their help with graph theory!