ON THE MINIMISATION OF TRANSITION-BASED RABIN AUTOMATA AND THE CHROMATIC MEMORY REQUIREMENTS OF MULLER CONDITIONS

> Antonio Casares LaBRI, Université de Bordeaux

Minimisation of Automata

Muller games

State of the art minimisation of co-Büchi automata:

Transition-based

3 kinds of memory structures:

Player 1

Player 2

Players move a pebble in turns producing an infinite word

Deterministic	NP-complete (Schewe 2010)	?	Muller condition: Family of subsets	of colours $\mathcal{F} = \{\{a, b, c\}, \{a\}, \{b\}\}\}$.
Good-For-Games	NP-complete (Schewe 2020)	Polynomial (Abu Radi-Kupferman 2019)	Player 1 wins if the set of colours proc	duced infinitely often is in \mathcal{F} .
Our contributions:			Memory structures	
Theorem Minimisation of transition-based Rabin automata is NP-complete.			b,c a up c b,c b,c b,c b,c bown	Structure that tells Player 1 how to play. It is updated after each move in the game.

Remark 1. For the reduction we use a language that is a Muller condition: whether a word $w \in \Sigma^{\omega}$ belongs to the language only depends on Inf(w).

Proposition

Minimisation of parity automata recognising Muller conditions can be done in polynomial time. **General memory:** Update transitions can depend on the specific edges of the game.

Chromatic memory: Update transitions only depend on the colours of the condition (for example, the memory structure above).

Arena-independent memory: Memory structure that can be used in any game where the winning condition is \mathcal{F} .

Question (Kopczyński 2006)

Is it true that, if Player 1 wins a game using a given winning condition, she requires the same amount of "general memory" than "chromatic memory" to win it?

Answer

No. There are Muller conditions for which Player 1 requires strictly more "chromatic memory" than "general memory" to win.

Memory and Rabin automata

In the following, "automaton" stands for "deterministic transition-based automaton".

Theorem

Let \mathcal{F} be a Muller condition. Any Rabin automaton recognising \mathcal{F} can be used as an arena-independent memory for \mathcal{F} -games. Conversely, any arena-independent memory for \mathcal{F} -games can be interpreted as a Rabin

References

- Bader Abu Radi and Orna Kupferman. Minimizing GFG transition-based automata. In *ICALP*, 2019.
- [2] Antonio Casares. On the minimisation of transition-based Rabin automata and the chromatic memory requirements of Muller condi-

automaton recognising \mathcal{F} . In particular, the following quantities coincide:

• The size of a minimal Rabin automaton recognising \mathcal{F} .

• The smallest amount of chromatic memory required to win \mathcal{F} -games.

• The size of a minimal arena-independent memory for \mathcal{F} -games.

Corollary

Determining the amount of chromatic memory needed in games using a Muller condition \mathcal{F} is NP-complete, even if the condition is represented by its Zielonka tree.

tions. CoRR, abs/2105.12009, 2021.

[3] Eryk Kopczyński. Half-positional determinacy of infinite games. In *ICALP*, 2006.

 [4] Sven Schewe. Beyond hyper-minimisation minimising DBAs and DPAs is NP-complete. In FSTTCS, 2010.

[5] Sven Schewe. Minimising Good-For-Games automata is NP-complete. In *FSTTCS*, 2020.