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Computing over infinite words

Two main tools used in the verification and synthesis of non-terminating reactive systems:

I Automata over infinite words.

I Two-players infinite duration games over graphs.



Main Contribution: Automata and Strategy Complexity

Good-For-Games Automata

I Automata with a restricted
amount of non-determinism.

I Applications in synthesis.

←→

Memories for Games

I Structures implementing
strategies.

I Measure of the complexity
of strategies.



Muller Games and Memory Structures
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Muller Languages

Muller language

Language described by boolean combination of

“Letter x appears infinitely often”.

“Letter y appears only finitely often”.

Examples

L1 = {w ∈ Cω | w contains ‘a’ and ‘b’ infinitely often}.

L2 = {w ∈ Cω | If w contains ‘a’ infinitely often, then ‘c ’ appears finitely many times}.



Strategies Might Require Memory

L = See ‘a’ and ‘b’ infinitely often.

Eve can force a victory, but she needs to remember previous moves.

: We use memory structures.
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I Set of states M.

I Update function.

I next-move : M × VEve → E , gives a
strategy.
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I Set of states M.

I Update function.

I next-move : M × VEve → E , gives a
strategy.

L = See ‘a’ and ‘c ’ infinitely often.

Output = abc . . .



Memory Structures as a Measure of the Strategy Complexity

Number of states of a memory
structure

∼ Complexity of the strategy



Optimal Size for Memory Structures

Memory Requirements

For L a Muller language, mem(L) is the minimal n ∈ N such that if Eve wins an L-game,
she can win it using a memory with n states.

: Always finite (Gurevich, Harrington 1982).

: Characterised by Dziembowski and Jurdzinski and Walukiewicz in 1997.



Structural Description of Optimal Memory Structures

Question 1

Give a structural description of optimal memories in L-games,
for L a Muller language.



Good-For-Games Rabin Automata



Automata Over Infinite Words
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Input = abababbbbbab · · · ∈ Σω → Infinite runs over the automaton.

: Different possibilities to define which runs will be accepting (Büchi, parity, Rabin...).
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Example: Büchi Conditions
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Büchi condition: We accept if we visit infinitely often a •t transition.



Example: co-Büchi Conditions
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co-Büchi condition: We accept if we visit only finitely often a X-transition.



Rabin Conditions

Rabin condition: A general acceptance condition expressing fairness properties that:

I Encompass Büchi, co-Büchi and parity.

I Appears naturally in verification problems (determinisation of automata, decidability of
MSO over trees).



Good-For-Games (GFG) Automata

A a non-deterministic automaton recognizing L ⊆ Σω.

A is good-for-games if there exists a strategy σ resolving its non-determinism such that:

w ∈ L ⇐⇒ The run over w obtained following σ is accepting.
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Examples GFG Automata

Deterministic =⇒ Good-For-Games

But they are not the only ones!



Non-Example GFG Automata
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Example GFG Automata
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w ∈ L(A) ⇔ w does not contain both ‘a’ and ‘c’ infinitely often.



Application of GFG Automata

I Intermediate model between deterministic and non-deterministic.

I Share some good properties with deterministic automata, and can be used instead for
some applications.

I They can be smaller than deterministic ones.

1 Deterministic automata are much bigger than non-deterministic ones.

2 Determinization is very costly for automata over infinite words.
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Application of GFG Automata

I Intermediate model between deterministic and non-deterministic.

I Share some good properties with deterministic automata, and can be used instead for
some applications.

I They can be smaller than deterministic ones.

Question 2

When are GFG automata more succinct than deterministic ones?

Question 3

Provide general tools for constructing GFG automata.



Main Results



Contribution 1: Correspondence Memory ↔ GFG-Automata

Theorem
For every Muller language L ⊆ Cω, the following quantities coincide:

I The size of a minimal GFG-Rabin automaton recognising L.

I mem(L): the optimal memory for the winning condition L.

Good-For-Games
Automata

←→ Memories for Games

: Unexpected and fundamental role of GFG automata!



Contribution 2: Construction of Minimal GFG-Rabin Automata

Good-For-Games
Automata

←→ Memories for Games

Upper bound for
GFG-automata : Explicit construction of a minimal GFG-Rabin

automaton for a Muller language.

Remark: Constructing such minimal deterministic Rabin automata is NP-complete.



Contribution 3: Succinctness of GFG-Rabin Automata

Theorem
Good-for-games Rabin automata recognising Muller languages can be exponentially more
succinct than deterministic ones.

Proof idea:

Lower bounds for the chromatic
number of some graphs.

=⇒ Lower bounds for deterministic Rabin
automata.
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