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Abstract
We propose a variant of an algorithm introduced by Schewe and also studied by Luttenberger for
solving parity or mean-payoff games. We present it over energy games and call it fast value iteration.
We find that using potential reductions as introduced by Gurvich, Karzanov and Khachiyan allows for
a simple and elegant presentation of the algorithm, which repeatedly applies a natural generalisation
of Dijkstra’s algorithm to the two-player setting due to Khachiyan, Gurvich and Zhao.
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1 Introduction

Mean-payoff and energy games. In the games under study, two players, Min and Max,
take turns in moving a token over a sinkless finite directed graph whose edges are labelled by
(potentially negative) integers, interpreted as payoffs. In a mean-payoff game, the players
aim to optimise (minimising or maximising, respectively) the average payoff in the long run.
When playing an energy game, Min and Max optimise the supremum of the cumulative sum
of payoffs which takes values in [0, +∞].

These two games are determined [17]: for each initial vertex v, there is a value x ∈ R
such that starting from v, the minimiser can ensure an outcome not greater than x whereas
the maximiser can ensure at least x. We call these values, respectively, the mean-payoff and
the energy value of the vertex v. They are moreover uniformly positionaly determined [8, 3]
which means that the players can achieve the optimal value from each vertex by using a
single strategy depending only on the current position in the game. We refer to Figure 1 for
a complete example.

In this paper, we are interested in the problem of computing energy values of the vertices
in a given game, which we call solving the energy game. As a consequence of positional
determinacy, the energy value of a vertex is finite if and only if its mean-payoff value is
non-positive [4], and therefore solving an energy game also solves the so called threshold
problem for mean-payoff games (determining if the mean-payoff value is non-positive). In
fact, all state of the art algorithms [4, 7, 2] for the threshold problem – further discussed
below – actually go through solving the energy game. The best algorithms for the more
general problems of computing the exact values or synthesising optimal strategies in the
mean-payoff game also rely on solving several instances of auxiliary energy games [6].

Positional strategies achieving positive or non-positive mean-payoff values can be checked
in polynomial time, and therefore the threshold problem belongs to NP ∩ coNP. Despite
numerous efforts, no polynomial algorithm is known. Mean-payoff games are known [23]
to be more general than parity games [9, 20] which enjoy a similar complexity status but
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XX:2 Fast value iteration for energy games

Figure 1 Example of a game; circles and squares represent vertices which respectively belong to
Min and Max. Mean-payoff values, from left to right, are −2, −2, − 1

2 , − 1
2 , 1 and 1, and mean-payoff-

optimal positional strategies for both players are identified in bold. Energy values, from left to right,
are 0, 2, 9, 0, ∞ and ∞, and energy-optimal strategies are given by arrows with double heads.

were recently shown to be solvable in quasipolynomial time [5]. It is however unlikely
that algorithms for solving parity games in quasipolynomial time generalise to mean-payoff
games [10].

Schewe’s algorithm. Schewe presented in [24] a strategy improvement algorithm for solving
parity games. Schewe points out that his framework can be adapted to the more general
case of mean-payoff games; one can actually see it as a switching policy in the combinatorial
strategy improvement framework proposed by Björklund and Vorobiov [2]. Luttenberger [15]
later formulated the same algorithm as one iterating over non-deterministic strategies: over
such strategies, it can be rephrased as iterative applications of the natural “all-switch” policy.

At that time, the connection between mean-payoff and energy games – established only
later in [3] and then simplified in [4] – was not well understood. In particular, the algorithms
above, following [2], introduce an additional sink vertex, called retreat vertex, and restrict the
iteration to so called admissible strategies, which can be understood as those guaranteeing
a finite energy. Actually, Björklund and Vorobiov [2] ask in their conclusion whether one
can avoid the need for a retreat vertex and admissible strategies; a positive answer to this
question is provided by the energy valuation presented in this work (details are provided in
the PhD thesis [22] of Ohlmann).

Our contribution. We propose a variant of Schewe’s algorithm; while the main ideas are the
same, the presentation as well as the precise execution of the algorithm differ. In particular,
we do not require introducing a retreat vertex, or restrict to a subclass of strategies. We also
do not require the vocabulary from strategy improvement.

The algorithm is presented as one iterating successive potential reductions, as introduced
by Gurvich, Karzanov and Khachiyan [13], until obtaining a trivial game. Each iteration
solves an auxiliary game over only non-negative weights, which is done in O(m + n log n)
operations using a simple extension of Dijkstra’s algorithm to the two-player setting, due to
Khachiyan, Gurvich and Zhao [14].

We believe that our new approach presents three advantages:
Our version is conceptually simpler and allows to appreciate the core algorithmic idea in
a new light. It also lends itself to more straightforward implementations of an algorithm
which performs very well in practice.
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Stating the algorithm in terms of potential reductions allows to compare it to other
important algorithms for solving energy games, such as those of Brim et al [4] and of
Gurvich, Karzanov and Khachiyan [13, 21].
Our presentation leads to a natural symmetric extension of the algorithm; we refer to the
conclusion for more details.

Related work. It is worth noting that Schewe’s algorithm is a key component in the
LTL-synthesis tool STRIX [19, 16], which has won all editions of the main annual synthesis
competition SYNTCOMP. The algorithm was also ported to the GPU by Meyer and
Luttenberger [18]. We also believe that there are similarities to be understood between
the algorithm under study and the quasi-dominion approach of Benerecetti, Dell’Erba and
Mogavero [1].

Outline. The first section introduces all necessary concepts and recalls the relationship
between mean-payoff and energy games. We also present the standard value iteration
algorithm of Brim et al. [4] in the vocabulary of potential reductions. The second section
presents the fast value iteration algorithm, and the third one proves its correctness and
termination. We then conclude and discuss future work.

2 Preliminaries

In this preliminary section, we introduce mean-payoff and energy games, as well as potential
reductions.

Mean-payoff and energy games. In this paper, a game is a tuple G = (G, w, VMin, VMax),
where G = (V, E ⊆ V × V ) is a finite directed graph with no sink, w : E → Z is a labelling
of its edges by integer weights, and VMin, VMax is a partition of V . We always use n, m and
W respectively for |V |, |E| and max

e∈E
|w(e)|; we say that vertices in VMin belong to Min while

those in VMax belong to Max. We now fix a game G = (G, w, VMin, VMax).
A path is a (possibly empty, possibly infinite) sequence of edges π = e0e1 . . . with

matching endpoints, that is, there is a sequence of vertices v0v1 . . . such that ei = vivi+1. For
convenience, we often write v0 → v1 → v2 → . . . for such a path. Given a finite or infinite
path π = e0e1 . . . we let w(π) = w(e0)w(e1) . . . denote the sequence of weights appearing
on π. The sum of a finite path π is the sum of the weights appearing on it, we denote it by
sum(π).

Given a finite or infinite path π = e0e1 · · · = v0 → v1 → . . . and an integer k ≥ 0, we let
π<k = e0e1 . . . ek−1 = v0 → v1 → . . . → vk, and we let π≤k = π<k+1. Note that π<0 is the
empty path, and that π<k has length k in general: it belongs to Ek. We say that π starts in
v0, and when it is finite and of length k that it ends in vk. By convention, the empty path
starts and ends in all vertices. A cycle is a finite path which starts and ends in the same
vertex. A finite path v0 → v1 → . . . → vk is simple if there is no repetition in v0, v1, . . . , vk−1;
note that a cycle may be simple. We let Πω

v denote the set of infinite paths starting in v.
The greek letter ω denotes the ordered set of positive integers. We use R∞,Z∞ and N∞

to denote respectively R∪ {∞},Z∪ {∞} and N∪ {∞}. A valuation is a map val : Zω → R∞

which assigns a potentially infinite real number to each infinite sequence of weights.
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The three valuations which are studied in this paper are the mean-payoff, energy, and
positive-energy valuations, given by

MP(w0w1 . . . ) = lim supk
1
k

∑k−1
i=0 wi ∈ R,

En(w0w1 . . . ) = supk

∑k−1
i=0 wi ∈ N∞,

En+(w0w1 . . . ) =
∑kneg−1

i=0 wi ∈ N∞,

where kneg = min{k | wk < 0} ∈ N∞ is the first index corresponding to a negative weight.
For technical convenience, and only in the context of energy games, we will also consider
games in which weights are potentially (positively) infinite. We thus extend the definitions
of En and En+ to words in (Z∞)ω, using the same formula. Note that for any w ∈ (Z∞)ω

we have 0 ≤ En+ ≤ En. The three valuations are illustrated on a given weight profile in
Figure 2.

Figure 2 The three valuations over a given weight-profile. The mean-payoff value is given by the
slope of the green line, which corresponds to the long-term average. In this case, the mean-payoff is
≤ 0, and both En and En+ are finite.

A strategy for Min is a map σ : VMin → E such that for all v ∈ VMin, it holds that σ(v) is
an edge outgoing from v. We say that a (finite or infinite) path π = e0e1 · · · = v0 → v1 → . . .

is consistent with σ if whenever vi ∈ VMin, it holds that ei = σ(vi). We write in this
case π |= σ. Strategies for Max are defined similarly and written τ : VMax → E. Paths
consistent with Max strategies are defined analogously and also denoted by π |= τ . In
common vocabulary, the theorem below states that the three valuations are determined with
positional strategies over finite games. It is well known for MP and En and easy to prove
for En+ (Lemma 6 provides an algorithmic proof of this fact). We remark that positional
determinacy also holds for the two energy valuations En and En+ over games where we allow
for infinite weights.

▶ Theorem 1 ([8, 3]). For each val ∈ {MP, En, En+}, there exist strategies σ0 for Min and
τ0 for Max such that for all v ∈ V we have

sup
π|=σ0

val(w(π)) = inf
σ

sup
π|=σ

val(w(π)) = sup
τ

inf
π|=τ

val(w(π)) = inf
π|=τ0

val(w(π)),

where σ, τ and π respectively range over strategies for Min, strategies for Max, and infinite
paths from v.

The quantity defined by the equilibrium above is called the value of v in the val game,
and we denote it by valG(v) ∈ R∞; strategies σ0 and τ0 verifying the equalities above are
called val-optimal, note that they do not depend on v.
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The following result relates the values in the mean-payoff and energy games; this direct
consequence of Theorem 1 was first stated in [4].

▶ Corollary 2 ([4]). For all v ∈ V it holds that

MPG(v) ≤ 0 ⇐⇒ EnG(v) < ∞ ⇐⇒ EnG(v) ≤ (n − 1)W.

Therefore computing En values of the games is harder than the threshold problem. As
explained in the introduction, all state-of-the-art algorithms for the threshold problem
actually compute En values. This shifts our focus from mean-payoff to energy games.

Potential reductions. We fix a game G = (G = (V, E), w, VMin, VMax). A potential is a map
ϕ : V → N∞. Potentials are partially ordered coordinatewise. Given an edge vv′ ∈ E, we
define its ϕ-modified weight to be

wϕ(vv′) =
{

∞ if ϕ(v), ϕ′(v) or w(vv′) is ∞
w(vv′) + ϕ(v′) − ϕ(v) otherwise.

The ϕ-modified game Gϕ is simply the game (G, wϕ, VMin, VMax); informally, all weights are
replaced by the modified weights. Note that the underlying graph does not change, in
particular paths in G and Gϕ are the same. Note that any edge outgoing a vertex v with
potential ϕ(v) = ∞ has weight ∞ in the modified game, therefore v has En and En+-values
∞ in Gϕ.

Observe that for a finite path π = v0 → v1 → . . . → vk which visits only vertices with
finite potential, its sum in Gϕ is given by

sumϕ(v) = sum(π) + ϕ(vk) − ϕ(v0).

We let 0 denote the constant zero potential; note that G0 = G. For convenience, we use Enϕ

to denote EnGϕ
(we remark that En0 = EnG). We will omit the subscript whenever the game

or potential under consideration is clear from the context.
Moving from G to Gϕ for a given potential ϕ is called a potential reduction; these were

introduced by Gallai [12] for studying network related problems such as shortest-paths
problems. In the context of mean-payoff or energy games, they were introduced in [13] and
later rediscovered numerous times. The main result that allows to use potential reductions
to solve energy games is stated as follows.

▶ Theorem 3. If ϕ satisfies ϕ ≤ En0, then it holds that En0 = ϕ + Enϕ over V .

We will use the following lemma to prove Theorem 3.

▶ Lemma 4. Let σ0 be an En-optimal Min strategy in G and π = v0 → v1 → . . . → vk

be a finite path consistent with σ0 such that En0(vk) < ∞. Then we have sum(π) ≤
En0(v0) − En0(vk).

Proof. Let π′ be an infinite path from vk consistent with σ0 and such that En0(vk) =
En(w(π′)) (such a path exists, as it can be obtained from an En-optimal Max strategy τ0).
Then ππ′ is consistent with σ0 thus En0(v0) ≥ En(w(ππ′)) by optimality. We thus obtain

En0(v0) ≥ En(w(ππ′)) = supk′≥0(sum((ππ′)<k′))
≥ supk′≥k(sum((ππ′)<k′))
= sum(π) + supk′≥0 sum(π′

<k′)
= sum(π) + En(w(π′)) = sum(π) + En0(vk). ◀
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We now present a proof of Theorem 3.

Proof of Theorem 3. Let ϕ : V → N∞ be a potential such that ϕ ≤ En0; we aim to prove
that En0 = ϕ + Enϕ over V . Consider first a vertex v with En0(v) = ∞, fix an optimal Max
strategy τ0 in G and an infinite path π = e0e1 · · · = v0 → v1 → . . . consistent with τ0 from v:
by definition we have En(w(π)) = supk

∑k−1
i=0 w(ei) = ∞. We claim that En(wϕ(π)) = ∞

which proves the wanted equality over v (both terms are infinite).
If for some i, w(ei) = ∞ then wϕ(ei) = ∞ which implies the result.
If for some i, ϕ(vi) = ∞ then again we have wϕ(ei) = ∞.
Otherwise, we have for all k

sumϕ(π<k) = ϕ(vk) − ϕ(v0)︸ ︷︷ ︸
bounded

+sum(π<k),

and therefore supk sumϕ(π<k) = supk sum(π<k) = ∞, the wanted result.

We now consider a vertex v such that En0(v) < ∞. Consider an En-optimal Min strategy
σ0 : VMin → E in G and let π = v0 → v1 → . . . be an infinite path consistent with σ0 starting
from v0 = v. Note that for any k ≥ 0, vk has finite energy value, and thus we obtain thanks
to Lemma 4 and the hypothesis ϕ ≤ En0 that

sumϕ(π<k) = sum(π<k) + ϕ(vk) − ϕ(v0)
≤ En0(v0) −En0(vk) + ϕ(vk)︸ ︷︷ ︸

≤0

−ϕ(v0) ≤ En0(v0) − ϕ(v0),

hence Enϕ(v0) = supπ|=σ0 supk≥0 sumϕ(π<k) ≤ En0(v0) − ϕ(v0).
For the other inequality, consider an optimal Min strategy σϕ in Gϕ, and let π be an

infinite path from v0 = v consistent with σϕ. By applying Lemma 4 in Gϕ we now get

sum(π<k) = sumϕ(π<k) − ϕ(vk) + ϕ(v0)
≤ Enϕ(v0) − Enϕ(vk)︸ ︷︷ ︸

≥0

− ϕ(vk)︸ ︷︷ ︸
≥0

+ϕ(v0) ≤ Enϕ(v0) + ϕ(v0),

and the wanted result follows by taking a supremum. ◀

An illustration of the effect of potential reductions over energy values, described in
Theorem 3, is given in Figure 3.

We say that a potential ϕ is sound if it satisfies the hypothesis of Theorem 3: ϕ ≤ En0.
Observe that (Gϕ)ϕ′ = Gϕ+ϕ′ : sequential applications of potential reductions correspond

to reducing with respect to the sum of the potentials. Moreover, if ϕ is sound for G and ϕ′ is
sound for Gϕ, then applying Theorem 3 twice yields En0 = ϕ + ϕ′ + Enϕ+ϕ′ .

The value iteration of Brim et al. Before moving on to the fast value iteration, it is
instructive to describe the standard one of Brim et al. [4] as follows. Consider the valuation
First given by

First(w0w1 . . . ) = max(w0, 0) ∈ N.

Note that First depends only on the first weight appearing on the path, therefore the First-
values of the vertices of a game G can be computed in linear time O(m): the First-value of a
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Figure 3 An illustration of the effect of potential reductions in the energy values. The energy
value Enϕ(v) of v in the ϕ-modified game Gϕ is given by the difference between En0(v) and ϕ(v).
For the three vertices on the right, energy values in both games are ∞.

Min vertex (resp. a Max vertex) v is the minimum (resp. the maximum) of max(w(vv′), 0)
over its successors v′.

Now for any infinite sequence of weights w = w0w1 . . . we have First(w) ≤ En(w),
and therefore the First-values of a game G do not exceed its En-values. Stated differently,
First : V → N∞ defines a sound potential . The value iteration algorithm of Brim et al.
simply iterates the corresponding potential transformation, generating a sequence of modified
games. The iteration terminates when for all vertices of the obtained game, if their cumulative
sum of potentials computed so far is ≤ nN , then their First-value is 0 (the En-value in the
original game of those vertices is the cumulative sum of potentials; the rest of them have
En-value ∞).

Simple games. A game is simple if all simple cycles have nonzero sum. The following result
is folklore and states that one may reduce to a simple game at the cost of a linear blow up
in W . It holds thanks to the fact that positive mean-payoff values are ≥ 1/n, which is a
well-known consequence of Theorem 1.

▶ Lemma 5. Let G = (G, w, VMin, VMax) be an arbitrary game. The game with modified
weights G′ = (G, (n + 1)w − 1, VMin, VMax) is simple and has the same vertices of positive
mean-payoff values as G.

Note moreover that simplicity is preserved by potential transformations, since sums of
weights over cycles are left unchanged.

3 The fast value iteration algorithm

3.1 Presentation of the algorithm

The fast value iteration algorithm is based on successively applying sound potential reductions
ϕ0, . . . , ϕj until a game G′ is reached where energy-values are either 0 or ∞. Thanks to
Theorem 3, we have EnG = EnG′ + ϕ0 + · · · + ϕj ; in particular, a vertex has finite energy (or
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non-positive mean-payoff) in G if and only if it has energy 0 in G′, and in this case its energy
in G is given by ϕ0(v) + · · · + ϕj(v).

The potential reductions computed by each iteration of the fast value iteration algorithm
are precisely the En+-values in the game. Intuitively, the players optimise the (non-negative)
sum of the weights seen before the first negative weight. Since 0 ≤ En+ ≤ En, the potential
En+ : V → N∞ is indeed sound, as required by our approach. Note that we have First ≤ En+:
the algorithm performs bigger steps than the standard value iteration of Brim et al. [4] (hence
the name). The algorithm terminates when the next potential reductions does not produce
any change in the game. Lemma 8 shows that this condition implies that the energy-values
of the obtained game are either 0 or ∞.

The fact that the En+-values can be computed efficiently follows from the fact that only
non-negative weights are considered, and therefore a straightforward two-player extension of
Dijkstra’s algorithm, due to1 Khachiyan, Gurvich and Zhao [14] can be applied. A similar
subroutine was also given by Schewe [24], whereas Luttenberger [15] uses an adaptation of
the algorithm of Bellman-Ford which is less efficient.

▶ Lemma 6 (Based on [14]). Over simple games, the En+-values can be computed in
O(m + n log n) operations.

Proof. We start by determining in linear time O(m) the set N of vertices from which Min
can force to immediately visit an edge of negative weight; these have En+-value 0. We will
successively update a set F containing the set of vertices over which En+ is currently known.
We initialise this set F to N . Note that all remaining Min vertices have only non-negative
outgoing edges, and all remaining Max vertices have (at least) a non-negative outgoing edge.

We then iterate the two following steps illustrated in Figure 4. (A complexity analysis is
given below.)
1. If there is a Max vertex v /∈ F all of whose non-negative outgoing edges vv′ lead to F , set

En+(v) to be the maximal w(vv′) + En+(v′), add v to F , and go back to 1.
2. Otherwise, let vv′ be an edge from VMin \ F to F (it is necessarily positive) minimising

w(vv′) + En+(v′); set En+(v) = w(vv′) + En+(v′), add v to F and go back to 1. If there
is no such edge, terminate.

After the iteration has terminated, there remains to deal with F c, which is the set of
vertices from which Max can ensure to visit only non-negative edges forever. Since the arena
is assumed to be simple (no simple cycle has weight zero) it holds that En+ is ∞ over F c,
and we are done2.

As is standard, by storing the number of edges outgoing from Max vertices in F c to
F , step 1 induces only a total linear runtime O(m). For step 2, one should store, for each
v ∈ VMax \ F , the edge towards F minimising w(vv′) + En+(v′) in a priority queue. Using a
Fibonacci heap as was first suggested by Fredman and Tarjan [11] for Dijkstra’s algorithm
lowers the complexity from O(m log n) to O(m + n log n). ◀

3.2 Termination and correctness
Termination. To prove that the fast value iteration algorithm terminates in finitely many
steps, we rely on a simple lemma which states that the set of vertices from which Min can

1 This corresponds to Theorem 1 in [14], case (i) with blocking systems B2.
2 If the arena is not simple, one must additionally solve a Büchi game, and the complexity of the iteration

is increased. We believe that this increased cost can be amortised overall, but give no details for this
claim.
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Figure 4 The game version of Dijkstra’s algorithm; blue edges are negative and red ones are
non-negative. If there is a vertex such as v (it belongs to Max and all edges pointing out of F

are < 0), one may set the value of v. Otherwise, set the value of a Min vertex v minimising
w(vv′) + En+(v′) over edges going to F ; if there is no such edge, terminate (Max can force seeing
≥ 0 edges forever).

ensure to immediately see a negative weight can only shrink throughout the iteration. This
will allow us to show that the cumulative sum of the En+-values is bounded, proving the
termination of the algorithm.

▶ Lemma 7. Let G′ = GEn+
G

, let N and N ′ be the sets of vertices from which Min can ensure
to immediately visit a negative weight, respectively in G and G′. We have N ′ ⊆ N .

Proof. We show that N c ⊆ N ′c. Let v ∈ N c. If En+
G (v) = ∞, then v has only outgoing

edges of infinite weight in G′ thus is cannot belong to N ′; we assume otherwise.
Assume v ∈ VMax. Let τ be an En+

G -optimal strategy in G, and let τ(v) = vv′ ∈ E.
Since v /∈ N we have w(vv′) ≥ 0 and En+

G (v) = w(vv′) + En+
G (v′). Hence we have

wEn+
G

(vv′) = w(vv′) + En+
G (v′) − En+

G (v) = 0 ≥ 0 so v /∈ N ′.
Assume now that v ∈ VMin. We have for all vv′ ∈ E that w(vv′) ≥ 0 hence En+

G (v) ≤
w(vv′) + En+

G (v′), and thus wEn+
G

(vv′) ≥ 0, so v /∈ N ′. ◀

We now let G0 = G denote the initial game, and for each j ≥ 0 we let ϕj = En+
Gj

and Gj+1 = (Gj)ϕj
be the game obtained after j iterations of the algorithm. We also let

Φj = ϕ0 + · · · + ϕj−1; it holds that Gj = (G0)Φj .
This lemma directly gives (with obvious notations) N0 ⊇ N1 ⊇ . . . and therefore vertices

v′ in Nj satisfy Φj(v′) = 0. Now if v is a vertex such that ϕj(v) = En+
Gj

(v) is finite, then
by definition there is a simple path π = v0 → . . . → vk in G from v to some v′ ∈ Nj whose
Φj-modified sum is sumΦj

(π) = ϕj(v). This rewrites as

0 ≤ ϕj(v) = −Φj(v) + Φj(v′)︸ ︷︷ ︸
0

+
k−1∑
i=0

wΦj
(vivi+1)︸ ︷︷ ︸

≤nW

,

and thus Φj(v) ≤ nW . Stated differently, finite values remain ≤ nW , which guarantees
termination in at most O(n2N) iterations.

We give a full example over a game of size 15 in Figure 5.

Correctness. Recall that the iteration terminates after j steps if Φj+1 = Φj (where
Φj = ϕ0 + · · · + ϕj−1 is the cumulative sum of the En+-values at the j-th iteration).
We now state and prove correctness of the termination condition.
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Figure 5 A complete execution of the fast value iteration algorithm. In each iteration, we indicate
the En+-values of each vertex. Optimal strategies are indicated with bold arrows. Vertices from
which Min can force to immediately see a negative weight are coloured in blue, and those with a
strictly positive En+-value in red.

▶ Lemma 8. If Φj+1 = Φj, then EnGj
takes values in {0, ∞} over V .

Proof. Note that vertices such that Φj(v) = ∞ have only outgoing edges of weight ∞ in Gj

and therefore they have En+-value ∞. Hence, Φj(v) < ∞ ⇒ En+
Gj

(v) = 0; we let F be the
set of vertices v with Φj(v) < ∞. Since Φj+1 = Φj , all Min vertices in F have a non-positive
outgoing edge in Gj towards F , and all Max vertices in F have all their outgoing edges
non-positive and towards F , hence the result. ◀

4 Conclusion

We have presented the fast value iteration algorithm using potential reductions. This allows
to reduce to several iterations over non-negative weights, each of which can be treated
efficiently using Dijkstra’s algorithm. In particular, presenting the algorithm does not require
introducing a retreat vertex, or using vocabulary from strategy improvements. We believe
that this new presentation sheds a lot of clarity on this important algorithmic idea.

Alternating value iteration. We end the paper with a possible extension of these ideas.
One may also compute, in the very same fashion, the En−-values of the game, where
En− : Zω → [−∞, 0] is given by En−(w0w1 . . . ) =

∑kpos−1
i=0 wi, with kpos = min{k | wk > 0}.
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Iterating En− potential transformations gives rise to a dual algorithm, which of course
terminates with similar complexity.

We have observed empirically that alternatively applying3 En+ and En− potential
transformation leads an algorithm which terminates over any instance. Moreover, it achieves
even fewer iterations that the (asymmetric) fast value iteration algorithm, and especially so
over parity games, for which we have witnessed a significant gain over large random instances.

However, we have not been able to derive its termination using the currently available
tools. Could one prove termination of the (symmetric) alternating value iteration algorithm?
Could we hope for a subexponential combinatorial upper bound?
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