
Transition-based vs stated-based acceptance
for automata over infinite words

Antonio Casares*

Abstract
Automata over infinite objects are a well-established model with appli-

cations in logic and formal verification. Traditionally, acceptance in such
automata is defined based on the set of states visited infinitely often during
a run. However, there is a growing trend towards defining acceptance based
on transitions rather than states.

In this survey, we analyse the reasons for this shift and advocate using
transition-based acceptance in the context of automata over infinite words.
We present a collection of problems where the choice of formalism has a
major impact and discuss the causes of these differences.
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1 Introduction
Automata theory is a central and long-established topic in computer science. The
definition of finite automata has barely suffered any modification since the in-
troduction of non-deterministic automata by Rabin and Scott [RS59]. However,
the generalisation of automata to infinite words presents less stable definitions,
as different modes of acceptance are best suited to different situations. Recently,
there has been a shift in the community towards using transitions instead of states
to encode the acceptance condition of ω-automata. In this survey, we analyse
the reasons for this shift and advocate using of transition-based acceptance in the
context of automata over infinite words.

Automata over infinite words. An automaton over an input alphabet Σ is
given by

• a finite set of states Q,

• a set of transitions ∆ ⊆ Q × Σ × Q,

• a set of initial states Qinit ⊆ Q, and

• an acceptance condition.

A run over a (finite or infinite) word w is a path in the automaton starting in Qinit

and with transitions labelled by the letters of w. The acceptance condition is thus
a representation of the set of paths that are accepting.

If the automaton works over finite words, it is widely agreed that the accep-
tance condition should take the form of a subset of final states: a run is accepting
if it ends in one of them (see Section 5.2 for further discussions on finite words).
For automata over infinite words the situation is more complicated. Several ac-
ceptance conditions are commonly used, but they differ in expressive power and
the complexity of related problems (see for instance [Bok18]). The main focus
of this paper is the following dichotomy: Should we use states or transitions to
encode the acceptance condition of automata over infinite words? More formally,
we will consider acceptance conditions of one of the following forms.

A state-based acceptance condition is a language Acc ⊆ Qω. A transition-
based acceptance condition is a language Acc ⊆ ∆ω.1 Usually, we will represent
them via a colouring function γ : Q → C (resp. γ : ∆ → C) and a language
Acc′ ⊆ Cω. That is, we see automata as transducers Σω → Cω, and the acceptance
condition is given by a subset of the image. Two languages that are commonly
used as acceptance conditions are:

1To obtain a well-behaved class of automata, these languages should be prefix-independent.
See Section 5.2 for details.



• Buchi = {w ∈ {−, •}ω | w contains • infinitely often}. We may refer to states
(resp. transitions) coloured with • as accepting.

• coBuchi = {w ∈ {−,✗}ω | w contains ✗ finitely often}.

We show examples of Büchi automata in Figure 1.
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Figure 1: Two Büchi automata recognising the language of words containing in-
finitely many factors ‘aa’. The automaton on the left uses transition-based accep-
tance, while the automaton on the right is state-based.

The origins. Automata over infinite words were first introduced by Büchi
in the 60s [Büc62], using a formalism that put the acceptance condition over
states.2 The tradition of employing state-based acceptance persisted in all sub-
sequent classic foundational works on ω-automata: Muller’s paper at the origin of
the Muller condition [Mul63], Landweber’s study of the complexity of ω-regular
languages [Lan69], McNaughton’s works on ω-regular expressions [McN66] and
infinite games [McN93], Rabin’s decidability result of S2S [Rab69], Wagner’s pa-
per introducing a hierarchy of complexity [Wag79], etc. Following this tradition,
virtually all handbooks and surveys about automata on infinite objects use state-
based acceptance [Eil74, Tho90, Tho97, GTW02, PP04, BK08, Kup18, BCJ18,
WS21, Löd21]. To the best of our knowledge, the only exceptions are the recent
book Games on Graphs edited by Fijalkow [Fij+25], and the book An Automata
Toolbox by Bojańczyk [Boj].

The rise of transition-based acceptance. Automata with “effects” on tran-
sitions, such as sequential transducers3 [Huf59, Sch61a] [Eil74, Chapter XI] or
weighted automata [Sch61b] have been considered since the beginnings of au-
tomata theory. However, as far as we are aware of, transition-based ω-automata

2Corroborating this claim can be quite challenging. The use of state-based acceptance can be
observed, for instance, in the first line of the proof of Lemma 12 (page 8). In Büchi’s 1969 paper
with Landweber [BL69a], this is a bit simpler to appreciate in the definitions of SupZ and U, in
the second page of the paper.

3Curiously, Moore’s paper [Moo56] introducing sequential machines puts the outputs on states.



did not appear until the 90s, in the works of Le Saëc [Saë90, SPW91, VSL95]. He
introduced transition-based Muller automata under the name of table-transition
automata, and characterised which languages admit a unique morphism-minimal
Muller automaton: those that can be recognised by a Muller automaton with one
state per residual of the language [VSL95, Cor. 5.15]. This characterisation no
loger holds for state-based automata (see Example 10 for an illustration on how
the previous property is sensitive to the placement of the acceptance condition).

Despite the works of Le Saëc, transition-based automata were used only
scarcely in the following years. A notable exception is given by a set of works
concerning the translation of LTL-formulas to automata. In 2001, Gastin and
Oddoux proposed a translation using transition-based generalised Büchi au-
tomata [GO01], which was the base for the tool ltl2ba (the importance of the
use of transition-based automata in this work is further discussed in [GL02]). The
use of transition-based acceptance became relatively common in this subarea, see
e.g. [CDP05, Bab+12, Sic+16]. In particular, the HOA format supports transition-
based automata [Bab+15], and tools such as Spot [DP04], Owl [KMS18] or
ltl3tela [Maj+19] used them by default since their first version.

A turning point occurred in 2019, as Abu Radi and Kupferman proved that
transition-based history-deterministic coBüchi automata can be minimised in
polynomial time [AK19], while Schewe showed that the corresponding problem
is NP-complete for state-based automata [Sch20]. Since then, there is an increas-
ing interest for transition-based ω-automata, and, as discussed in Sections 3 and 4,
many recent results rely on the use of this model.

Why was the use of state-based acceptance widespread? We may won-
der why state-based automata were the ubiquitous model for more than 50 years.
Probably the most influential factor is that ω-automata generalise automata over
finite words, for which acceptance over states is indeed the natural choice. Some
natural constructions of ω-automata build on automata over finite words, and for
some of these, state-based acceptance appears naturally.

One example of such a construction is the characterisation of languages
recognised by deterministic Büchi automata as limits of languages of finite
words [Lan69]. A language L ⊆ Σω can be recognised by a deterministic Büchi
automaton if and only for some regular language of finite words Lfin ⊆ Σ

∗ we
have:

L =
−−→
Lfin = {w ∈ Σω | w contains infinitely many prefixes in Lfin}.

Building a state-based Büchi automaton from a deterministic automaton recog-
nising Lfin is easy: we just need to interpret the final states of the automaton as
accepting Büchi states.



Structure of the survey. We start by showing in Section 2 that we can
switch between state and transition-based acceptance with at most a linear blow-
up. However, we already notice a key difference: going from a state-based au-
tomaton to a transition-based one does not require adding any additional state,
while deciding the minimal number of states required to perform the converse
transformation is NP-hard (Proposition 3). In Section 3, we present a collection
of problems involving ω-automata where the choice between transition-based and
state-based acceptance may affect whether the problem is NP-complete or solv-
able in polynomial time. In Section 4, we discuss how the placement of the ac-
ceptance condition impacts the study of strategy complexity in games on graphs.
Finally, in Section 5 we discuss some of the reasons causing these striking differ-
ences between the two models.

Definitions are introduced progressively as needed. The reader may use the
hyperlinks on technical terms to quickly see their definition.

2 From states to transitions and vice-versa
At first sight, it could seem that there is no great difference between state-based
or transition-based acceptance: we can go from one model to the other with at
most a linear blow-up. However, transition-based automata are always smaller,
and going from a state-based automaton to a transition-based one in an optimal
way is NP-hard, as stated in Proposition 3.

Proposition 1. Every state-based automaton can be relabelled with an equivalent
transition-based acceptance condition.

Proof. Let Acc ⊆ Qω be the acceptance condition of the automaton, and let
γ : ∆ → Q be the function assigning to each transition (q, a, q′) its source state
q. Then, (γ,Acc) is an equivalent transition-based acceptance condition. □

In general, we cannot relabel in a similar manner a transition-based automaton
to obtain an equivalent state-based one. We can, however, build an equivalent
state-based automaton paying a small blow-up on the number of states.

Proposition 2. Every transition-based automaton admits an equivalent state-
based automaton with at most |Q||∆| + |Qinit| states.

Proof. Let A be a transition-based automaton with acceptance Acc ⊆ ∆ω. We
define the automaton having:

• States: (Q × ∆) ∪ Qinit.



• Transitions: For every transition t′ = q
a
−→ q′ in A, we let (q, t)

a
−→ (q′, t′),

and q
a
−→ (q′, t′) if q ∈ Qinit.

• Initial states: Qinit.

• Acceptance condition: We define γ : Q → ∆ ∪ {x} by: γ(q, t) = t and
γ(q0) = x if q0 ∈ Qinit. The acceptance condition is given by the colouring γ
and the language xAcc.

It is immediate to check that the obtained automaton is equivalent toA. □

In both proofs above, the obtained automaton is not only equivalent to the
original one, but there is a bijection between the runs of both. We formalise this
idea with the notion of locally bijective morphisms [Cas+24, Def.3.3].

Given two automata A,A′ over the same alphabet, a locally bijective mor-
phism is given by a function φ : Q→ Q′ such that:

• φ(Qinit) = Q′init,

• for all (q, a, q′) ∈ ∆, (φ(q), a, φ(q′)) ∈ ∆′,

• for all (p, a, p′) ∈ ∆′ and q ∈ φ−1(p), there is q′ ∈ φ−1(p′) such that
(q, a, q′) ∈ ∆, and

• a run ρ inA is accepting if and only if φ(ρ) is accepting inA′.

Intuitively, if φ : A → A′ is a locally bijective morphism, it means that A
has been obtained from A′ by duplicating some of its states, for instance, via a
product construction. For example, the automaton on the right of Figure 1 admits
a locally bijective morphism to the automaton on its left.

Proposition 1 implies that for every state-based automaton there is a transition-
based automaton of same size admiting a locally bijective morphism to it (the
automaton itself). However, this problem becomes hard in the other direction,
already for Büchi automata.

Proposition 3. The following problem is NP-complete:

Input: A transition-based Büchi automatonAtr and a positive integer n.
Question: Is there a state-based Büchi automaton with n states admitting

a locally bijective morphism toAtr?

Proof. To show NP-hardness, we use the reduction from Vertex Cover given by
Schewe to show the NP-completeness of the minimisation of state-based deter-
ministic Büchi automata [Sch10].



Let G = (V, E) be an undirected graph. Consider the Büchi automaton AG

over the alphabet Σ = V with states QG = V , all of them initial, and transitions
u

v
−→ v for every (u, v) ∈ E, and for u = v. For the Buchi condition, all transitions

are accepting except the self-loops v
v
−→ v. This automaton recognises the paths

in G, allowing repetition of vertices, but that visit at least two different vertices
infinitely often.

Let k be the size of a minimal vertex cover of G. We claim that there is a state-
based Büchi automaton with |V |+k states admitting a locally bijective morphism to
AG, and that this is optimal. To obtain such a state-based automaton, we duplicate
every state v that is part of a given vertex cover. Let v•, v− be the two copies of this
state, and set v• to be an accepting state. Among non-duplicated states, transitions
are as in AG. For duplicated states, we let vi

v
−→ v− for i ∈ {−, •} and ui

v
−→ v• for

(u, v) ∈ E. It is easy to chech that φ(vi) = v defines a locally bijective morphism.
For the converse direction, let A be a state-based Büchi automaton and

φ : A → AG a locally bijective morphism. For every state v in AG, φ−1(v) must
contain a non-accepting state, as a run ending in vω is rejecting in AG. We claim
that the set of vertices such that φ−1(v) contains an accepting state is a vertex cover
of G. Indeed, for every edge (u, v) ∈ E, a word ending in (uv)ω is accepting in
AG, therefore, either φ−1(u) or φ−1(v) contains an accepting state.

The problem is in NP, as there is always such an automaton with 2|Q| states.
For n < 2|Q|, it suffices to guess an automaton Ast with n states and a locally
bijective morphism φ : Ast → Atr. □

In our opinion the above propositions indicate that state-based acceptance is
often innapropriate. We believe that, in an ideal scenario, each state of a mini-
mal automaton should stand for some semantic properties of the language they
represent (in the case of automata over finite words, these are the residuals of the
language). This cannot be the case for state-based ω-automata, as some states
must be allocated to encode parts of the acceptance condition.

3 Minimisation and transformations of automata
In this section we study three problems relating to ω-automata: minimisation,
conversion of acceptance condition and determinisation. We discuss how the use
of transition-based or state-based acceptance can critically affect these problems.

3.1 Minimisation of coBüchi automata
The minimisation problem asks, given an automaton and a number n, whether
there is an equivalent automaton with at most n states. This problem admits differ-



ent variants, depending on the class of automata that constitutes the search space
(here we assume that this class is the same for the input and output automata).

In 2010, Schewe showed that the minimisation problem is NP-hard for most
types of deterministic state-based ω-automata, including Büchi, coBüchi or par-
ity [Sch10]. It came as a surprise when Abu Radi and Kupferman showed
that history-deterministic coBüchi automata can be minimised in polynomial
time [AK22] (conference version from 2019 [AK19]). Soon after, Schewe showed
that the same problem is NP-hard for state-based automata.4

An automaton is history-deterministic (HD) if there is a resolver σ : Σ∗ × Σ→
∆, such that for every word w accepted by the automaton, the run over w built
following the transitions given by σ is accepting. History-deterministic coBüchi
automata are as expressive as deterministic ones, but they can be exponentially
more succinct [KS15].

Proposition 4 ([AK22],[Sch20]). The minimisation problem for history-deterministic
transition-based coBüchi automata is solvable in polynomial time.

The minimisation problem for history-deterministic state-based coBüchi au-
tomata is NP-complete.

The work of Abu Radi and Kupferman provided the basis of many sub-
sequent results, including new representations for ω-regular languages [ES22,
Ehl25], minimisation of HD generalised coBüchi automata [Cas+25], passive
learning of HD coBüchi automata [LW25] and characterisations of positional lan-
guages [CO24]. The transition-based assumption is essential to all these works.

Schewe’s proof of NP-hardness of the minimisation of deterministic state-
based Büchi automata [Sch10] strongly relies on putting the acceptance over
states. In fact, as we have seen in Proposition 3, what this reduction shows is that
finding a minimal state-based automaton that simulates a transition-based one is
NP-hard. It was not until 2025 that the minimisation of deterministic transition-
based Büchi and coBüchi automata was shown to be NP-hard, requiring a highly
technical proof [RE25].

3.2 Translation from Muller to parity

The complexity of the acceptance condition used by an automaton may greatly af-
fect the computational cost of dealing with these automata. Namely, many prob-
lems are PSPACE-hard for Muller automata [HD05], but become tractable for
parity automata [Cal+22, Bok18]. Therefore, an important task is to simplify the

4Note that the critical difference lies in the output class, as we can convert the input from
state-based to transition-based in polynomial time.



acceptance condition of a given automaton. In practice, this usually takes the fol-
lowing form: given an automaton using a Muller condition, build an equivalent
automaton using a parity condition.

The parity and Muller conditions are defined as follows:

• parity(d) = {w ∈ {1, . . . , d}ω | lim inf w is even}.

• Muller(F ) = {w ∈ Cω | Inf(w) ∈ F }, for F ⊆ P(C) a family of subsets and
Inf(w) the set of colours that appear infinitely often in w.

Recently, an optimal transformation has been introduced – based on a struc-
ture called the Alternating Cycle Decomposition (ACD) – transforming a Muller
automatonA into a parity one [Cas+24]. Formally, it produces a transition-based
parity automaton that admits a locally bijective morphism to A and with a min-
imal number of states among parity automata admiting such a morphism. This
transformation can be performed in polynomial time provided that the ACD can
be computed efficiently; this is the case for example if the acceptance condition
ofA is generalised Büchi, defined as follows:

• genBuchi = {w ∈ P(C)ω |
⋃

A∈Inf(w)
A = C}.

Proposition 5 (Follows from [Cas+24, Thm. 5.35]). Given a generalised Büchi
automatonA, we can build in polynomial time a transition-based Büchi automa-
ton admiting a locally bijective morphism to A that has a minimal number of
states among Büchi automata admitting locally bijective morphisms toA.

However, the optimality result of the ACD-transformation strongly relies on
the use of transition-based acceptance in the output automaton, as the previous
problem becomes NP-hard for state-based automata.

Proposition 6. The following problem is NP-complete:

Input: A state-based generalised Büchi automatonA and a positive integer n.
Question: Is there a state-based Büchi automaton with n states admitting

a locally bijective morphism toA?

Proof. We can use the same reduction as in the proof of Proposition 3 (which
in turn comes from [Sch10]). Indeed, we can replace the transition-based Büchi
condition of the automatonAG by a state-based generalised Büchi condition. □



3.3 Determinisation of Büchi automata
The determinisation of Büchi automata is a fundamental problem in the the-
ory of ω-automata, studied since the introduction of the model [Büc62]. The
first asymptotically optimal determinisation construction is due to Safra [Saf88],
which transforms a Büchi automaton into a deterministic Rabin one. Later on,
Piterman [Pit06] and Schewe [Sch09] further improved the construction, reducing
the number of states of the final automaton. Schewe’s construction transforms
a Büchi automaton of size n into a deterministic Rabin automaton of size at
most sizeDet(n), which is naturally equipped with a transition-based acceptance
condition. In 2009, Colcombet and Zdanowski [CZ09] showed that the Piterman-
Schewe construction is tight (up to 0 states!) as we precise now.

Proposition 7 ([CZ09]). There exists a family of Büchi automataAn with n states,
such that a minimal transition-based deterministic Rabin automaton equivalent to
An has sizeDet(n) states.

We could obtain a state-based automaton by augmenting the number of states,
but doing so we no longer have a matching lower bound. No such tight bounds are
known for the determinisation of Büchi automata towards state-based automata.

The complementation and determinisation problems for Büchi and generalised
Büchi automata with transition-based acceptance were further studied by Vargh-
ese in his PhD Thesis [Var14]. In the works of Schewe and Varghese [SV12,
SV14], they point out the suitability of transition-based acceptance for the study
of transformations of automata.

4 Games on graphs and strategy complexity
A game is given by a directed graph G = (V, E) with a partition of vertices into
those controlled by a player Eve and those controlled by a player Adam, a initial
vertex and a winning condition defined in the same way as the acceptance condi-
tion of automata (which can be state-based or transition-based). The players move
a token in turns producing an infinite path, and Eve wins if this path belongs to
the winning condition.

An important concept with applications for the decidability of logics [BL69b,
GH82] and verification [BCJ18] is that of strategy complexity: how complex is
it to represent a winning strategy? The simplest kind of strategies are positional
ones. A strategy is positional if it can be represented by a function σ : V →
E: when in a vertex v controlled by Eve, she plays the transition σ(v). More
generally, a strategy is said to use finite-memory if the choice at a given moment
only depends on a finite amount of information from the past, or, said differently,



it can be implemented by a finite automaton (we refer to [Fij+25, Section 1.5] for
formal definitions).

As already noticed by Zielonka [Zie98], and as we will see next, strategy
complexity is quite sensitive to the placement of the winning condition.

4.1 Bipositionality over infinite games
We say that a language Win ⊆ Cω is positional if for every game with winning
condition Win, if Eve has a winning strategy, she has a positional one. A lan-
guage Win is bipositional if both Win and its complement are positional, or, said
differently, if both Eve and Adam can play optimally using positional strategies.
Depending on whether we consider games with transition-based or state-based
winning condition, we will say accordingly positional over transition/state-based
games.

A celebrated result in the area is the proof of bipositionality of parity lan-
guages [EJ91, Mos84]. In 2006, Colcombet and Niwiński proved that these are the
only prefix-independent bipositional languages over infinite game graphs [CN06],
establishing an elegant characterisation of bipositionality. As indicated in the title
of their paper, this characterisation only holds for transition-based games.

Proposition 8 ([CN06]). A prefix-independent language Win ⊆ Cω is bipositional
over transition-based games if and only if there is d ∈ N and a mapping ϕ : C →
{1, . . . , d} such that w ∈ Win if and only if ϕ(w) ∈ parity(d).

Proposition 9 ([Zie98, Section 6]). There is a prefix-independent language that
is bipositional over totally-coloured state-based games, but is not equivalent to
parity(d) for any d.

Proof sketch. An example of such a language is

Win = {w ∈ {a, b}ω | both a and b appear infinitely often in w}.

Intuitively, if Eve is in a vertex coloured a, she can follow a strategy leading to a
vertex coloured b in a positional way (and vice-versa).

From Adam’s point of view, if he can win, there are some vertices from which
he can force to never produce ‘a’ or force to never produce ‘b’ (and this can
be done positionally). Removing those vertices, we define a positional strategy
recursively. (Note that this can also be done for transition-based games, in fact,
from Adam’s point of view, Win is a Rabin condition, which are positional.) □

The characterisation of bipositionality was generalised to all (not necessar-
ily prefix-independent) languages in [CO24, Thm. 7.1]. A necessary condition
for bipositionality is that the language should be recognised by a transition-based



deterministic parity automaton with one state per residual of the language. This
property is very sensitive to the placement of the acceptance condition, if suf-
fices to consider the language Buchi that cannot be recognised by a state-based
automaton with a single state. The next example shows another version of this.

Example 10. Consider the language

L = {w ∈ {a, b}ω | if letter ‘a’ occurs in w then it appears infinitely often}.

This language has two residuals: ε−1L and a−1L. It can be recognised by a
transition-based parity automaton (even a Büchi automaton) with two states, as
shown in Figure 2. One can check that it also satisfies the other conditions
from [CO24, Thm. 7.1], so it is bipositional. However, it is not possible to recog-
nise L with a state-based parity automaton with only 2 states.

b•
a

b

a
•

Figure 2: A Büchi automaton recognising the bipositional language of words that
either contain no a, or infinitely many a’s. This automaton has one state per resid-
ual of the language. A state-based parity automaton recognising this language
must have at least 3 states.

4.2 Positionality via monotone graphs
Recently, Ohlmann characterised positionality by means of monotone univer-
sal graphs [Ohl23]. Not only this characterisation concerns positionality over
transition-based games, but the main notion of monotone graph radically uses the
colouring on transitions. An ordered edge-coloured graph is monotone if when-

ever v
a
−→ u, v ≤ v′ and u′ ≤ u, then the edge v′

a
−→ u′ also appears in the graph.

Such kind of properties can only be naturally phrased in edge-coloured graphs.
Universal monotone graphs have been used to study the algorithmic com-

plexity of solving different types of games on graphs, such as parity and mean-
payoff [Col+22], and the above characterisation has been generalised to the mem-
ory of languages [CO25a].



4.3 The memory of ω-regular languages
The memory of a language Win is the minimal m ∈ N such that in any game
with objective Win, if Eve has a winning strategy, she has one implemented by an
automaton with at most m states. A result with major implications in logic is the
fact that ω-regular languages have finite-memory [BL69b, GH82].

Recently, Casares and Ohlmann gave an effective way of computing the mem-
ory of ω-regular languages [CO25b], based on a characterisation using the notion
of ε-completable parity automata. The definition of this notion is rooted in the
use of transition-based acceptance: A parity automaton is ε-completable if for
every pair of states q, q′ and even colour x of the parity condition, we can either

add a transition q
ε:x
−−→ q′ or a transition q′

ε:x+1
−−−−→ q without modifying the language

recognised by the automaton.
In 2023, Bouyer, Randour and Vandenhove showed that ω-regular languages

are exactly those that are arena-independent finite-memory determined (that is,
both Eve and Adam admit finite automata implementing strategies in every game
with winning condition Win) [BRV23, Thm. 7]. The use of transition-based ac-
ceptance is key for the construction of a parity automaton recognising a language
with the above property [BRV23, Section 5].

In 2021, Casares showed that the smallest automata that can be used for
implementing winning strategies in every game using a given Muller language
Muller(F ) are exactly deterministic Rabin automata recognising Muller(F ) [Cas22,
Thm. 27]. In a related work, Casares, Colcombet and Lehtinen showed that the
memory of Muller(F ) coincides with the number of states of a minimal history-
deterministic Rabin automaton recognising this language [CCL22, Thm. 5]. Both
results only apply to transition-based Rabin automata.

5 Outlook

5.1 Why is transition-based acceptance better behaved?
We have seen various situations in which using transition-based acceptance is
more advantageous, both for practical and theoretical reasons. The following
question arises naturally: What are the fundamental differences between state-
based and transition-based models that lead to such contrasting properties?

Composition of transitions. A basic operation at the heart of many reason-
ings in automata theory is composition of transitions. If an automaton contains

transitions p
a
−→ q and q

b
−→ r, one can go from p to r by reading ab, and any

“effect” of this path should be the result of concatenating the effects of these two



transitions. That is, a suitable automata model should allow to add the transition
p

ab
−→ r. For automata over infinite words, the acceptance of the automaton ob-

tained by adding this transition can only be defined in a sensible way by using a
transition-based condition.

This composition operation is key for the celebrated connection between au-
tomata and algebra. In fact, one of LeSaëc’s motivations for the use of transition-
based automata was to obtain an algebraic proof of McNaughton’s theorem for
infinite words [SPW91]. The Muller automaton obtained from a given semigroup
is naturally transition-based, see [SPW91, page 18] and [Col11, Section 6].

As mentioned in the previous section, composition of transitions is also essen-
tial in the fruitful approach for solving and analysing infinite duration games based
on universal graphs, which relies on the notions of monotonicity, ε-completion
and the technique of saturation (for the latter, see [CF18, Section 4], [Col+22,
Section 4.1] or [Ohl23, Section 3.3]).

Paths in graphs. As explained in the introduction, an acceptance condition
is a representation of a subset of paths in an automaton. A path in a graph is
commonly defined as a sequence of edges. In fact, a sequence of vertices does not
completely determine a path, as different paths may share the same sequence of
vertices. This is the main reason why transition-based automata are more succinct
than state-based ones.

5.2 What about finite words?
In light of the results above, one naturally wonders whether a shift to transition-
based acceptance would also be beneficial for automata on finite words (NFAs
in the following). As discussed in the introduction, in the case of transducers or
weighted automata the actions are traditionally put over transitions.5 However,
we do not believe transition-based acceptance to be better suited for automata
over finite words. Indeed, using final states as acceptance leads to a clean model
that allows for composition of transitions and any transition-based analog seems
to raise some problems. But, why exactly is this the case?

Following the definition of ω-automata used here, we can propose the follow-
ing model of automata over finite words: transitions are coloured by a function
γ : ∆ → C, and the acceptance condition is given by a language Acc ⊆ C∗. If Acc
is a regular language, the language accepted by such an automaton is also regu-
lar (we can convert to a classical NFA by a product construction). In this model,

5Whether weighted automata and transducers can be considered fully transition-based is a
disputable statement. Indeed, these models usually need to have initial and final weights/strings
on states.



transition-based acceptance seems natural. However, there is a major problem.
LetA be a transition-based NFA as above with acceptance condition Acc. We

would like the acceptance of the runs starting in a given state q to be well-defined,
that is, that they do not depend on which path led us to q. More formally, ifAq is
the automaton obtained by setting q to be the initial state and using the acceptance
condition Acc, we want that for every ρ0 = qinit

u q and ρ = q w q′:

ρ0ρ is accepting inA ⇐⇒ ρ is accepting inAq. (*)

In particular, ifA is deterministic and qinit
u q, then L(Aq) = u−1L.

The class of acceptance languages that ensures all automata have property (*)
consists exactly of the prefix-independent languages: Acc is prefix-independent if
for all u,w, uw ∈ Acc ⇐⇒ w ∈ Acc. However, the only prefix-independent
languages of finite words are the empty and the full language (indeed, if Acc is
prefix-independent, for all u we must have u ∈ Acc ⇐⇒ ε ∈ Acc). There-
fore, it is not possible to obtain a transition-based model recognising non-trivial
languages of finite words and with the consistency property (*).

The classical state-based acceptance of NFAs is almost equivalent to the
transition-based model that uses the acceptance language AccLast, defined as the
set of words that end with a distinguished symbol. This language has the follow-
ing property, very close to prefix-independence:

For all u and w , ε, uw ∈ AccLast ⇐⇒ w ∈ AccLast.

Languages with this property are those that are well-suited for state-based ac-
ceptance, as the acceptance of ε can be encoded in a state while preserving the
consistency property (*). In fact, AccLast is the only non-trivial language of finite
words that has this property, as the validity of a word must be determined by its
last letter.

5.3 Final thoughts
The collection of results presented in this survey indicate that, despite the fact
that the size of state-based and transition-based automata only differ by a linear
factor, transition-based models are easier to manipulate and have a nicer theory.
We therefore advocate adopting transition-based acceptance as the default model
for ω-automata.

We expect that the use of transition-based acceptance will ease the finding of
automata-based characterisation of classes of languages. This has already been
the case, for example, in the characterisation of positional ω-regular languages
based on parity automata with a particular structure [CO24, Thm. 3.1].



In the same spirit, it appears that the use of transition-based models will be
required for obtaining canonical models of automata over infinite words or trees.
Steps in this direction have already been made [ES22, Ehl25, LW25], building on
the description of canonical history-deterministic coBüchi automata by Abu Radi
and Kupferman [AK22].
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