
Simple and tight complexity lower bounds for solving Rabin games
∗

Antonio Casares
1
, Marcin Pilipczuk

2
, Michał Pilipczuk

2
, Uéverton S. Souza

3
, and

K. S. Thejaswini
4,5

1
LaBRI, Université de Bordeaux, France

2
University of Warsaw, Poland

3
Universidade Federal Fluminense, Niterói, Brazil

4
University of Warwick, United Kingdom

5
Institute of Science and Technology, Austria

Abstract

We give a simple proof that assuming the Exponential Time Hypothesis (ETH), determining the

winner of a Rabin game cannot be done in time 2o(k log k) · nO(1)
, where k is the number of pairs of

vertex subsets involved in the winning condition and n is the vertex count of the game graph. While

this result follows from the lower bounds provided by Calude et al [SIAM J. Comp. 2022], our reduction

is considerably simpler and arguably provides more insight into the complexity of the problem. In fact,

the analogous lower bounds discussed by Calude et al, for solving Muller games and multidimensional

parity games, follow as simple corollaries of our approach. Our reduction also highlights the usefulness

of a certain pivot problem — Permutation SAT — which may be of independent interest.

1 Introduction

We study Rabin games defined as follows. The arena of a Rabin game is a (finite) directed graph D whose

vertices are divided among the two players involved: Steven and Audrey
1
. There is an initial vertex u1

on which a token is initially placed. The game proceeds in turns. Each turn, the player controlling the

vertex u on which the token is currently placed chooses any outneighbour v of u and moves the token from

u to v. Thus, by moving the token, the players construct an infinite walk ρ = (u1, u2, u3, . . .) in D, called

a play. To determine the winner, the play ρ is compared against the winning condition consisting of k pairs

of vertex subsets (G1, B1), (G2, B2), . . . , (Gk, Bk) as follows: Steven wins if there exists i ∈ {1, . . . , k}
such that along ρ, Gi is visited infinitely often while Bi is visited only a finite number of times; Audrey

wins otherwise. The computational question associated with the game is to determine which player has a

winning strategy.

Rabin conditions were first introduced by Rabin in his proof of decidability of S2S (monadic second order

with two successors) [Rab69]. They also naturally appear in the determinization of Büchi automata [Saf88,

Pit06, Sch09], a key step in the synthesis problem for reactive systems with specifications given in Linear

∗

This work is a part of projects CUTACOMBS (Ma. Pilipczuk), BOBR (Mi. Pilipczuk), and VAMOS (K. S. Thejaswini) that have

received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation

programme, grant agreements No 714704, 948057, and 101020093, respectively. Ma. Pilipczuk is also partially supported by Polish

National Science Centre SONATA BIS-12 grant number 2022/46/E/ST6/00143.

1

The right way to memorize the player names is Steven and Oddrey; the naming comes from the context of parity games.

1



Temporal Logic. Since then, algorithms for solving Rabin games have been extensively studied [EJ99, KV98,

PP06, BMM
+
22]. They generalise the more well-known parity games, which differ by altering the winning

condition as follows. Each vertex of the graph bears a colour, which is an integer from {1, . . . , k}. Steven
wins a play ρ if the largest colour seen infinitely often in ρ is even, and otherwise Audrey wins. Indeed, to

reduce a parity game with colours {1, . . . , k} to a Rabin game with ⌊k/2⌋ pairs in the winning condition,

it suffices to take the same graph D and set

Gi = {vertices with colours ⩾ 2i} and Bi = {vertices with colours ⩾ 2i+ 1},

for all i ∈ {1, . . . , ⌊k/2⌋}. Further, both parity games and Rabin games are generalised by Muller games,

where again vertices have colours from {1, . . . , k} (each vertex may bear multiple colours), and the winning

condition is defined by simply providing a family F of subsets of {1, . . . , k} that are winning for Steven in

the following sense: Steven wins a play ρ if the set of colours seen infinitely often in ρ belongs to F .

In a breakthrough paper, Calude, Jain, Khoussainov, Li, and Stephan [CJK
+
22] proved that solving all

the three games discussed above is fixed-parameter tractable when parameterised by k (the number of

colours, respectively the number of pairs in the winning condition). More precisely, determining the winner

of the game can be done in kO(k) · nO(1)
time, where n is the number of vertices of the arena. The recent

work of Majumdark, Saǧlam and Thejaswini [MST23] provides a more precise analysis which results in an

algorithm solving Rabin games in polynomial space and time k!1+o(1) ·nm, wherem is the number of edges.

While the work of Calude et al. also provided a quasipolynomial-time algorithm to solve parity games, it

is known that solving Rabin games is already NP-complete [EJ88, EJ99], while solving Muller games is

PSPACE-complete [HD05]. Hence, for those games, the existence of (quasi)polynomial-time algorithms

is unlikely.

In their work, Calude et al. [CJK
+
22] provided also complexity lower bounds based on the Exponential

Time Hypothesis (ETH, the assumption that there exists δ > 0 such that 3SAT problem cannot be solved

in time O(2δn)) for some of the games discussed above. They proved that assuming ETH, there are no

algorithms with running time 2o(k log k) · nO(1)
for solving Muller games with priorities in {1, . . . , k}

or d-dimensional k-parity games (see preliminaries for a definition of the latter variant). Since every

k-dimensional parity game can be reduced in polynomial time to a Rabin game with k pairs in the winning

condition (see [CHP07]), one can also derive, as a corollary, the same lower bound for solving Rabin games.

The reduction provided by Calude et al. starts with the Dominating Set problem and is rather involved.

Our contribution. We provide a simple reduction that reproves the tight complexity lower bound for

solving Rabin games that follows from the work of Calude et al. More precisely, we prove that assuming

ETH, there is no algorithm for this problem with running time 2o(k log k) · nO(1)
. The same lower bound for

(the more general) Muller games follows as a direct corollary. By a minor twist of our construction, we can

also reprove the lower bound for k-dimensional parity games reported by Calude et al.

We believe that our reduction is significantly simpler and more transparent than that of Calude et al.

but more importantly, it gives a better insight into the origin of the 2o(k log k)
factor in the complexity of

the problem. Analyzing the algorithms of [CJK
+
22, MST23], this factor stems from considering all possible

permutations of the k pairs of vertex subsets involved in the winning condition. In our reduction, those

permutations form the space of potential solutions of a carefully chosen pivot problem — Permutation

SAT, a special case of a temporal constraint satisfaction problem — which we discuss below.

Temporal CSPs and Permutation SAT. A constraint satisfaction problem (CSP) is the problem of

deciding if there exists a variable assignment that satisfies a given set of constraints. Temporal problems

2



is a rich family of CSPs that model planning various events on a timeline. In a basic form, every variable

corresponds to an event that needs to be scheduled at some point of time and constraints speak about some

events being in specific order (e.g., one preceding another), at the same time, or at different times. This is

usually modeled with Q as the domain and constraints having access to predicates <, ⩽, =, and ̸=. A P vs

NP dichotomy for finite languages within this formalism has been provided by Bodirsky and Kára [BK10].

An instance of such a temporal CSP with k variables and n constraints can be solved in time kk ·
(k + n)O(1)

as follows: since variables are accessed only via comparisons <, ⩽, =, and ̸=, without loss of

generality one can restrict to assignments with values in {1, 2, . . . , k}, and there are kk such assignments

that can be all checked. An interesting and challenging question is: For which languages this running time

can be significantly improved?

In this paper, we focus in a particular temporal CSP: Permutation SAT. An instance of this problem

is given by a boolean combination of literals of the form x1 < x2 < . . . < xα; a solution for it is an

assignment of variables to integers making it a valid formula. We say that such a problem is an instance of

(α, β)-Permutation SAT if its constraints use at most β literals, and each of these literals involves at most

α variables. Observe that, without loss of generality, in Permutation SAT one can restrict attention to

assignments being surjective functions from variables {x1, . . . , xk} to {1, . . . , k}, which can be interpreted

as permutations of {1, . . . , k}; this justifies the choice of the problem name and yields a brute-force

algorithm with running time k! · (k + n)O(1)
.

Bonamy et al. [BKN
+
18] proved that (3,∞)-Permutation SAT admits no 2o(k log k)nO(1)

algorithm

unless the Exponential Time Hypothesis (ETH) fails. Our main technical contribution is a similar lower

bound for (2, 4)-Permutation SAT (Theorem 3.1). The proof of this result is a simple reduction from

the k × k-Cliqe problem considered by Lokshtanov, Marx, and Saurabh [LMS18]. It is our belief that

(α, β)-Permutation SAT is a problem with a very easy and robust formulation, hence its usefulness may

extend beyond the application to Rabin games discussed in this work.

2 Preliminaries on games

For a positive integer p, we denote [p] := {1, . . . , p}.
Rabin and Muller games are turn-based two-player games played on an arena that is a directed graph

D = (V,E) together with a partition of the vertices into those owned by player Steven and those owned by

player Audrey. A token is initially placed on a designated starting vertex u1. In each consecutive turn, the

owner of the vertex bearing the token moves the token along an edge of D. Thus, the players jointly form

an infinite sequence of vertices in consecutive turns, referred to as a play. An objective is a representation

of a subset of the set of all possible plays. We will consider three different objectives discussed below.

Muller objectives. In a Muller game, each vertex is labelled with a subset of colours from [k] via a

mapping c : V → 2[k], where V is the set of vertices of the arena D. The Muller objective is specified by a

family of subsets of colours F ⊆ 2[k]. A play ρ is winning for Steven if the set of colours visited infinitely

often, belongs to F , that is, if ⋃
v∈Inf(ρ)

c(v) ∈ F ,

where Inf(ρ) is the set of vertices appearing infinitely often in the play.

3



Rabin objective. ARabin objective of degree k consists of k pairs of vertex subsets (G1, B1), . . . , (Gk, Bk);
Gi is said to be the good subset for index i, and Bi is the bad subset. A play ρ is winning for Steven if there

exists an index i ∈ {1, . . . , k} such that ρ visits Gi infinitely often and Bi only a finite number of times.

Rabin objectives of degree k can be encoded as a Muller objective using 2k colours. Indeed, for each

0 ⩽ i < k, we associate 2i with the subset Gi and 2i + 1 with the subset Bi. We define c : V → 2[2k]

and F as:

c(v) = {2i : v ∈ Gi} ∪ {2i+ 1: v ∈ Bi} and F = {C ⊆ [2k] : ∃i 2i ∈ C and 2i+ 1 /∈ C}.

Generalised parity objective. Generalised parity games were first considered in the work of Chaterjee,

Henzinger, and Piterman [CHP07]. In a d-dimensional k-parity condition, each vertex is labelled with a

d-dimensional vector of integers from {1, . . . , k}. An infinite play satisfies this objective for Steven if and

only if there is some coordinate such that the highest number that occurs infinitely often at this coordinate

is even. Audrey wins otherwise.

These games are inter-reducible with Rabin games, as shown by [CHP07]. For one direction, since a

d-dimensional k-parity objective is a disjunction of d distinct parity objectives, and each parity objective

can be expressed as a Rabin objective of degree ⌈k/2⌉, the d-dimensional k-parity objective can therefore

similarly be transformed into a Rabin objective of degree d⌈k/2⌉, with ⌈k/2⌉ Rabin pairs for each of the d
parity objectives. Conversely, a Rabin objective with d pairs can be represented as a d-dimensional 3-parity
objective. Indeed, we use each pair (Gi, Bi) to define the component pi that assigns colour 3 to v when

v ∈ Bi, colour 2 if v ∈ Gi \Bi and 1 otherwise.

Calude et al. [CJK
+
22] showed that generalised parity games cannot be solved in time 2o(k log k) · nO(1)

assuming the ETH, even when the dimensions is d = 2.

Strategies and winners. For a given game, with any of the objectives discussed above, a strategy

of Steven is a function from the set of plays ending at a Steven vertex to the set of vertices. A play

v0, v1, . . . , vi, . . . is said to respect this strategy if for every vertex vi which belongs to Steven, the vertex

vi+1 is the one proposed by the strategy on the finite prefix of this play ending at vi. For a fixed objective, a
game is said to be winning for Steven if he has a strategy such that plays respecting this strategy satisfy

the objective.

Positional strategies. We say that a strategy (for Steven) is positional (or memoryless) if it can be

represented by a function assigning an outgoing edge to each vertex owned by Steven. That is, a positional

strategy always makes the same decision over the same vertex, and this decision depends only on the

current vertex and not on the history of the play. It is well known that Rabin games are positional for

Steven in the following sense.

Lemma 2.1 ([EJ88, EJ99]). Rabin games are positional for Steven. That is, if Steven wins a Rabin game, then

he has a positional winning strategy.

Exponential Time Hypothesis. The Exponential Time Hypothesis is a complexity assumption intro-

duced by Impagliazzo, Paturi and Zane [IPZ01] that postulates the following: there exists δ > 0 such

that the 3-SAT problem cannot be solved in time O(2δn), where n is the number of variables of the input

formula. We refer the reader to [CFK
+
15, Chapter 14] for an introduction to the applications of ETH for

lower bounds within parameterized complexity.

4



Figure 1: The construction in Section 3. The highlighted clique corresponds to permutation x1 < y4 < x2 <
y1 < y3 < x3 < x4 < y2 < x5 (with y1 and y3 possibly swapped). The dashed non-edge ((4, 3), (3, 4))
is disallowed by the clause ¬ ((x4 < y3 < x5) ∧ (x3 < y4 < x4)) which ensures if y4 appears between x3
and x4, then y3 does not appear between x4 and x5.

3 Permutation SAT

Fix integers α ⩾ 2 and β ⩾ 1 and let X be a finite set of variables. An α-literal is a predicate of the form
x1 < x2 < . . . < xα′ (being a shorthand for (x1 < x2) ∧ (x2 < x3) ∧ . . . ∧ (xα′−1 < xα′)) for some

2 ⩽ α′ ⩽ α and variables x1, x2, . . . , xα′ belonging to X ; a literal is a 2-literal (i.e., a predicate of the form
x1 < x2). An (α, β)-clause is a disjunction of at most β α-literals, and an (α, β)-formula is a conjunction

of (α, β)-clauses. By β-clauses and β-formulas we mean (2, β)-clauses and (2, β)-formulas, respectively.

If ϕ is a formula with variable setX , then for a permutation π ofX we define the satisfaction of (literals

and clauses of) ϕ by π in the obvious manner. In the (α, β)-Permutation SAT problem we are given an

(α, β)-formula ϕ and the task is to decide whether there exists a permutation of the variables of ϕ that

satisfies ϕ. β-Permutation SAT is a shorthand for (2, β)-Permutation SAT.

In this section we prove the following hardness result.

Theorem 3.1. Assuming ETH, there is no algorithm for 4-Permutation SAT that would work in time

2o(k log k) · nO(1)
, where k is the number of variables and n is the number of clauses.

To prove Theorem 3.1 we use the problem k × k-Cliqe considered by Lokshtanov, Marx, and

Saurabh [LMS18]. They showed that, unless ETH fails, this problem cannot be solved in 2o(k log k)
-time. We

first define k × k-Cliqe below and then reduce k × k-Cliqe to 4-Permutation SAT.

An instance of the k × k-Cliqe problem is an undirected graph G with the vertex set {1, . . . , k} ×
{1, . . . , k} (which we can represent as a grid). This graph G is a positive instance of k × k-Cliqe if there

is one vertex from each row of the grid that forms a k-clique, that is, a k-clique in which no two vertices

share the same first component.

Theorem 3.2 ([LMS18, Theorem 2.4]). Assuming ETH, there is no 2o(k log k)
-time algorithm for k×k-Clique.

The reduction. We now reduce k × k-Cliqe to 4-Permutation SAT. Suppose G is an instance of

k×k-Cliqe. We construct a 4-formula ϕG over variable setX := {x1, . . . , xk, xk+1, y1, . . . , yk} as follows.
Recall that the vertices of the graph G are of the form (i, j) for i, j ∈ {1, . . . , k}. We say that vertex

5



(i, j) is in the ith row and jth column. To construct ϕG, we first write the following 3k many 1-clauses:

x1 < x2, x2 < x3, . . . , xk < xk+1,

x1 < y1, x1 < y2, . . . , x1 < yk

y1 < xk+1, y2 < xk+1, . . . , yk < xk+1

The conjunction of these clauses ensures that in any permutation satisfying ϕG, the variables x1, . . . , xk+1

are ordered exactly in this way, while variables y1, . . . , yk are sandwiched between x1 and xk+1. In other

words, the y-variables that are placed between xj and xj+1 indicate the rows that choose their clique

vertices from the jth column; and for some j’s, this set may be empty as well.

Next, we introduce clauses that restrict the placement of variables y1, . . . , yk within the chain x1 <
x2 < . . . < xk+1. The intention is the following: placing yi between xj and xj+1 corresponds to choosing

the vertex (i, j) to the clique. Hence, it remains to introduce clauses ensuring that vertices chosen in

this way in consecutive rows are pairwise adjacent. To this end, for every pair (a, b), (c, d) of vertices
non-adjacent in G, we construct the following 4-clause:

(ya < xb) ∨ (xb+1 < ya) ∨ (yc < xd) ∨ (xd+1 < yc).

Note that logically, this 4-clause is equivalent to the following:

¬ ((xb < ya < xb+1) ∧ (xd < yc < xd+1)) .

Thus, intuitively speaking, the 4-clause forbids simultaneously choosing (a, b) and (c, d) to the clique.

This concludes the construction of the formula ϕG. It remains to verify the correctness of the reduction.

Lemma 3.3. The graph G admits a k-clique with one vertex from each row if and only if ϕG is satisfiable.

Proof. First, suppose G contains a k-cliqueK = {(1, b1), . . . , (k, bk)}. Consider any permutation π of X
such that

• x1 < x2 < · · · < xk < xk+1, and

• xbi < yi < xbi+1, for all j ∈ {1, . . . , k}.
(Note that π is not defined uniquely, the relative placement of yi and yi′ can be arbitrary whenever bi = bi′ .)
It can be easily seen that K being a clique, implies that all clauses in ϕG are satisfied. The 1-clauses are
satisfied trivially, while every 4-clause constructed for a non-adjacent (a, b), (c, d) is satisfied because (a, b)
and (c, d) cannot simultaneously belong toK .

Suppose now that there is an ordering of X that satisfies ϕG. Clearly, it must be the case that x1 <
x2 < · · · < xk < xk+1. Further, for every i ∈ {1, . . . , k} we have x1 < yi < xk+1 and therefore, there

exists ji such that xji < yi < xji+1. We letK := {(i, ji) : i ∈ {1, . . . , k}}; note thatK contains one vertex

from each row. We claim that K is a clique in G. Indeed, since in ϕG there is a clause disallowing that

((xb < ya < xb+1) ∧ (xd < yc < xd+1)) whenever there is no edge between (a, b) and (c, d), all vertices
ofK must be pairwise adjacent.

This concludes the proof of Theorem 3.1. We remark that establishing the complexity of 2- and 3-
Permutation SAT remains an interesting and challenging open problem. Eriksson in his MSc thesis [Eri19]

shows that 2-Permutation SAT can be solved in time ((k/2)!)2 · (k + n)O(1)
, which gives roughly a 2k/2

multiplicative improvement over the naive algorithm.

For a broader context, we also remark that a more general variant of Permutation SAT is Permutation

MaxSAT, where we ask for an assignment that satisfies as many constraints as possible (instead of asking

6



to satisfy all of them). Observe that (2, 1)-Permutation SAT is equivalent to a problem of checking if a

given directed graph is acyclic (and thus solvable in polynomial time) while (2, 1)-Permutation MaxSAT

is equivalent to finding a maximum acyclic subdigraph (which is NP-hard). A simple folklore dynamic

programming algorithm solves (2, 1)-Permutation MaxSAT in 2O(k)nO(1)
time and this algorithm can

be generalised to (3, 1)-Permutation MaxSAT [BFK
+
12]. Kim and Gonçalves [KG13] proved that (4, 1)-

Permutation MaxSAT admits no 2o(k log k)nO(1)
algorithm unless the Exponential Time Hypothesis fails.

4 Lower bound for Rabin games

Finally, in this section, we prove the main result of this paper, stated as Theorem 4.1 below.

Theorem 4.1. Assuming the Exponential Time Hypothesis, there is no algorithm that solves Rabin games

with n vertices and degree k in time 2o(k log k) · nO(1)
.

As mentioned earlier, we reduce from 4-Permutation SAT.

The reduction. Let ϕ = C1 ∧ C2 ∧ · · · ∧ Cm be an instance of 4-Permutation SAT over k variables

{y1, . . . , yk}, where C1, . . . , Cm are 4-clauses. We construct an instance of Rabin Game such that, in this

instance, there is a strategy for Steven iff ϕ is satisfiable.

Figure 2: Part of the constructed game graph D. The clause C3 is (x1 < x3) ∨ (x2 < x1) ∨ (x2 <
x3) ∨ (xn−1 < x2). Vertices of G1 are highlighted in green and vertices of B1 are highlighted in blue.

We first define the game graph D; see Figure 2. There is an initial vertex ∆, as well as vertices

[C1], . . . , [Cm], one for each of the m 4-clauses in ϕ. Further, for each possible literal xi < xj , where
i, j ∈ {1, . . . , k} and i ̸= j, there is a vertex [xi < xj ]. Vertex∆ belongs to Audrey, while all other vertices

belong to Steven.

The intention is that whenever Audrey moves the token currently placed at ∆, she chooses a clause

that she wishes to see satisfied. To facilitate this, we add edges ∆ → [Cℓ] for all ℓ ∈ {1, . . . ,m}. Once
the token is at a vertex [Cℓ], Steven needs to respond with a literal present in Ci; the intention is for it to

be a true literal in Ci. Therefore, for every clause Cℓ and literal xi < xj present in Cℓ, we add the edge

[Cℓ] → [xi < xj ]. Finally, to allow Audrey checking further clauses, we add edges back to ∆: for every

literal xi < xj , there is an edge [xi < xj ] → ∆.

7



Next, we define subset pairs constituting the winning condition. For each i ∈ {1, . . . , k}, we set

Gi = {[xj < xi] : j ∈ {1, . . . , k} \ {i}} and Bi = {[xi < xj ] : j ∈ {1, . . . , k} \ {i}}.

Before we proceed to the formal verification of the correctness of the reduction, let us give some

intuition. It is easy to see that every third turn, the token is placed at vertex ∆. At each such moment,

turn Audrey chooses to move the token to any vertex corresponding to a clause Cℓ, with the intention of

challenging Steven about the satisfaction of Cℓ. Then Steven has to declare the literal that satisfies Cℓ. If

Steven tries to “cheat” by picking literals that cannot be extended to a full ordering of the variables, then the

winning condition is designed in such a way that the play will be losing for him. Consider the illustration in

Figure 2, where for an instance ϕ of 4-Permutation SAT which consists of m clauses such that the clause

C3 is (x1 < x4) ∨ (x2 < x1) ∨ (x2 < x3) ∨ (xn−1 < x2). The vertices in G1 are highlighted in green and

the vertices in B1 are highlighted in blue.

Lemma 4.2. The instance ϕ of 4-Permutation SAT is satisfiable if and only if Steven has a winning strategy

in the constructed Rabin game.

Proof. First suppose ϕ is satisfiable, consider a satisfying permutation π. This gives rise to a (positional)
winning strategy for Steven: For each vertex [Cℓ], Steven picks the edge leading to the vertex [xi < xj ]
corresponding to any literal of Cℓ that is satisfied in π. Consider now any infinite play ρ where Steven

obeys this strategy. Let L be the set of literals visited infinitely often by ρ, and let imax be such that ximax is

the variable that is the largest in π among variables appearing in the literals of L. We argue that ρ satisfies

the constructed Rabin condition with the index imax as a witness. This is because L intersects Gimax as ρ
visits [xi < ximax ] infinitely often for some i, while the intersection of L with Bimax is empty, as ρ never

visits any vertex [ximax < xi] for any i.
Suppose now ϕ is not satisfiable. Then we need to show that Audrey can win against any positional

strategy of Steven. Indeed, consider a fixed positional strategy of Steven: for each Steven vertex [Cℓ]
the strategy picks an edge [Cℓ] → [xaℓ < xbℓ ] for some literal xaℓ < xbℓ appearing in Cℓ. Since ϕ is

not satisfiable, the set {xaℓ < xbℓ : ℓ ∈ [m]} of all selected literals has a cycle. That is, there are variables

xc1 , . . . , xcp such that literals xc1 < xc2 , xc2 < xc3 , . . . , xcp−1 < xcp , xcp < xc1 are among those selected

by Steven’s strategy. Observe now that for the fixed Steven’s positional strategy, Audrey may set up a

counter strategy that repeatedly visits each of the vertices [c1 < c2], [c2 < c3], . . . , [cp−1 < cp], [cp < c1]
in a cycle, so that these are exactly the literal vertices visited infinitely often in the play. Then this play

does not satisfy the constructed Rabin condition, since for each i ∈ {1, . . . , k}, the set of vertices occurring
infinitely often either intersects both Bi and Gi (if i ∈ {c1, . . . , cp}), or is disjoint with both Bi and Gi (if

i /∈ {c1, . . . , cp}). Hence, Audrey may win against any fixed positional strategy of Steven.

Using the reductions shown in the preliminaries, we obtain similar corollaries for Muller and generalised

parity objectives.

Corollary 4.3. Assuming the Exponential Time Hypothesis, there is no algorithm that solves Muller games

with n vertices and k colours in time 2o(k log k) · nO(1)
.

Corollary 4.4. Assuming the Exponential Time Hypothesis, there is no algorithm that solves d-dimensional

3-parity games with n vertices in time 2o(d log d) · nO(1)
.

We conclude by remarking that we can also extend our result to 2-dimensional k-parity games. Indeed,

consider the following assignment of colours to the same game graph D: for each vertex of the form

[xj < xi], we assign the two-dimensional colour (2j +1, 2i). The correctness of this reduction is similar to

that for Rabin games presented above, hence we leave the verification to the reader.

8



Corollary 4.5. Assuming the Exponential Time Hypothesis, there is no algorithm that solves 2-dimensional

k-parity games with n vertices in time 2o(k log k) · nO(1)
.

Acknowledgements. A large part of the results presented in this paper were obtained during Autobóz

2023, an annual research camp on automata theory. The authors thank the organisers and participants of

Autobóz for creating a wonderful research atmosphere.

References

[BFK
+
12] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dimitrios M.

Thilikos. A note on exact algorithms for vertex ordering problems on graphs. Theory Comput.

Syst., 50(3):420–432, 2012.

[BK10] Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction problems.

J. ACM, 57(2):9:1–9:41, 2010.

[BKN
+
18] Marthe Bonamy, Lukasz Kowalik, Jesper Nederlof, Michał Pilipczuk, Arkadiusz Socała, and

Marcin Wrochna. On directed feedback vertex set parameterized by treewidth. In 44th

International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2018, volume

11159 of Lecture Notes in Computer Science, pages 65–78. Springer, 2018.

[BMM
+
22] Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh

Soudjani. A direct symbolic algorithm for solving stochastic Rabin games. In Tools and

Algorithms for the Construction and Analysis of Systems, pages 81–98. Springer, 2022.

[CFK
+
15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[CHP07] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized parity games. In

10th International Conference on Foundations of Software Science and Computational Structures,

FOSSACS 2007, volume 4423 of Lecture Notes in Computer Science, pages 153–167. Springer,

2007.

[CJK
+
22] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding

parity games in quasi-polynomial time. SIAM Journal on Computing, 51(2):STOC17–152–

STOC17–188, 2022.

[EJ88] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of programs

(extended abstract). In 29th Annual Symposium on Foundations of Computer Science, FOCS 1988,

pages 328–337. IEEE Computer Society, 1988.

[EJ99] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of programs.

SIAM Journal on Computing, 29(1):132–158, 1999.

[Eri19] Leif Eriksson. Solving temporal CSPs via enumeration and SAT compilation, 2019. MSc thesis.

[HD05] Paul Hunter and Anuj Dawar. Complexity bounds for regular games. In 30th International

Symposium on Mathematical Foundations of Computer Science, MFCS 2005, volume 3618 of

Lecture Notes in Computer Science, pages 495–506. Springer, 2005.

9



[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[KG13] Eun Jung Kim and Daniel Gonçalves. On exact algorithms for the permutation CSP. Theor.

Comput. Sci., 511:109–116, 2013.

[KV98] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata and tree automata emptiness.

In 30th Annual ACM Symposium on the Theory of Computing, STOC 1998, pages 224–233. ACM,

1998.

[LMS18] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized

problems. SIAM Journal on Computing, 47(3):675–702, 2018.

[MST23] Rupak Majumdar, Irmak Sağlam, and K. S. Thejaswini. Rabin games and colourful universal

trees. Unpublished, 2023.

[Pit06] Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic parity

automata. In 21st Annual IEEE Symposium on Logic in Computer Science, LICS 2006, pages

255–264, 2006.

[PP06] Nir Piterman and Amir Pnueli. Faster solutions of Rabin and Streett games. In 21st Annual

IEEE Symposium on Logic in Computer Science, LICS 2006, pages 275–284, 2006.

[Rab69] Michael O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans-

actions of the American Mathematical Society, 141:1–35, 1969.

[Saf88] Shmuel Safra. On the complexity of omega-automata. In 29th Annual Symposium on Foundations

of Computer Science, FOCS 1988, pages 319–327. IEEE Computer Society, 1988.

[Sch09] Sven Schewe. Tighter bounds for the determinisation of Büchi automata. In 12th International

Conference on Foundations of Software Science and Computational Structures, FOSSACS 2009,

volume 5504 of Lecture Notes in Computer Science, pages 167–181. Springer, 2009.

10


	Introduction
	Preliminaries on games
	Permutation SAT
	Lower bound for Rabin games

