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Abstract. This paper contributes to the study of positional determinacy of infinite
duration games played on potentially infinite graphs. Recently, [Ohlmann, TheoretiCS
2023] established that positionality of prefix-independent objectives is preserved by finite
lexicographic products. We propose two different notions of infinite lexicographic products
indexed by arbitrary ordinals, and extend Ohlmann’s result by proving that they also
preserve positionality. In the context of one-player positionality, this extends positional
determinacy results of [Grädel and Walukiewicz, Logical Methods in Computer Science
2006] to edge-labelled games and arbitrarily many priorities for both Max-Parity and
Min-Parity. Moreover, we show that the Max-Parity objectives over countable ordinals are
complete for the infinite levels of the difference hierarchy over Σ0

2 and that Min-Parity is
complete for the class Σ0

3. We obtain therefore positional languages that are complete for
all those levels, as well as new insights about closure under unions and neutral letters.

1. Introduction

1.1. Context: Positionality in games on graphs. We consider infinite duration games
played on directed graphs whose edges are coloured with labels from a set of colours C, with
a specified objective W ⊆ Cω. Both the game graph and the set of colours may be infinite.
The two players, Eve and Adam, take turns in moving a token along the edges of the graph.
If the sequence of colours appearing on the produced path belongs to W , then Eve wins,
otherwise Adam wins. If the objective W is Borel, then the game is determined, meaning
one of the two players has a winning strategy [Mar75].

This paper is part of a long line of research aiming at understanding which Borel
objectives are positional. A positional strategy depends only on the current vertex of the
game and not on the whole history of the play so far. An objective is positional for Eve
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(just positional1 in the following) if whenever Eve has a winning strategy in a game with
this objective then she has a positional one.

Recently, Ohlmann [Ohl23] introduced universal graphs to the study of positional
objectives, and proved that an objective2 W is positional if and only if it admits monotone
well-ordered universal graphs (see Section 2 for formal definitions). This result has been
generalised to characterise the memory of objectives [CO25a], and universal graphs have
already proven key to decide positionality of ω-regular objectives [BCRV24, CO24] and to
compute their memory [CO25b]. Universal graphs are the central object of study in this
work.

Closure properties and lexicographic products. Some of the questions surrounding
positional objectives concern their closure properties, with two major open problems in the
area focusing on this aspect:

• Kopczyński’s Conjecture [Kop08, Conjecture 7.1]: Are positional objectives closed under
finite and countable unions? This question has been answered positively for countable
unions of Σ0

2 objectives [OS24, Corollary 3] and for finite unions of their boolean com-
binations (including all ω-regular objectives) [CO25b, Theorem 12] and negatively for
positionality over finite graphs [Koz24].
• Neutral Letter Conjecture [Ohl23]: Are positional objectives closed under the addition
of a neutral letter, that is, a letter whose addition or removal from a word w does not
change whether w belongs to W? This conjecture has important consequences for the
completeness of the characterisation of positionality via universal graphs (see [Ohl23] or
Section 2 for details).

One of the few known closure properties of positional objectives is given by finite
lexicographic products, obtained as a corollary of the characterisation based on universal
graphs [Ohl23]. The lexicographic product of a sequence of objectives (Wi ⊆ Cω

i )i<k is their
hierarchical combination: a word w belongs to the product if πi(w) ∈ Wi, where i is the
largest index such that w contains infinitely many colours from Ci, and πi(w) is the subword
obtained by restricting w to these colours. This hierarchical combination of objectives
naturally appears due to the alternation of quantifiers of some logics, such as the fixpoint
operators in modal µ-calculus.

A paradigmatic example of such hierarchical construction is given by the parity objective

Parityd = {w ∈ {0, 1, . . . , d}ω | lim supw is even},

which enjoys a special status: it is one of the first objectives shown to be positional over
arbitrary game graphs [EJ91, Mos91], a result which is central in modern proofs of Rabin’s
Theorem on the decidability of the logic S2S [Rab69, GTW02], as well as in the algorithmic
study of infinite duration games [FAA+25]. It holds that the parity objective can be obtained
as a finite lexicographic product of trivial objectives, giving an alternative positionality proof
and highlighting the fundamental role of lexicographic products in the theory of positionality.

1In some parts of the literature, these are called half-positional or memoryless for Eve.
2All objectives in this paper are prefix-independent and admit a neutral letter, as explained in Section 2.
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From finite to infinite products. A natural goal is to extend the previous ideas to infinite
sequences of objectives. The simplest example of such a construction is the Min-Parity
objective over ω, defined by

MinParityω = {w ∈ ωω | lim inf w is finite and even}.

MinParityω was first studied by Grädel and Walukiewicz [GW06], who established its
bi-positionality, that is, positionality for both the objective and its complement. This result
was proved for vertex-labelled game graphs. Here, the distinction between vertex-labels and
edge-labels is crucial; in fact, it is easy to see (see Figure 1) that MinParityω is not positional
for the opponent when edge-labels are considered.3 Grädel and Walukiewicz [GW06]
also observed that bi-positionality does not hold when considering MaxParityω, or when
considering MinParityα for α > ω. However, failure of bi-positionality in these cases is due
to phenomena akin to Figure 1: playing an increasing sequence of priorities requires memory,
and therefore Adam requires memory. Positionality over edge-labelled graphs of all these
objectives is neither proved nor disproved in their work.

Figure 1: An edge-labelled game controlled by Adam where he requires non-positional
strategies to ensure that MinParityω is not met.

Topological complexity. In this paper, we are also interested in the topological complexity
of the new objectives that we obtain. One important property of the parity objectives over
finitely many colours is that they are Wadge-complete for the finite levels of the difference
hierarchy over Σ0

2 [Skr13]. The difference hierarchy consists of ω1 many levels of classes of
sets, which all lie below ∆0

3. The main interest of this hierarchy is that it spans the whole
class ∆0

3 (see for instance [Kec95, Theorem 22.27]). However, to the best of our knowledge,
no natural and positional languages were known for the infinite levels of this hierarchy (those
between ω and ω1).

Another motivation for the study of infinite lexicographic products is the development of
tools to propose new, complex, positional objectives. Since all ω-regular objectives lie below
∆0

3, no positional objective was known above this class.4 Indeed, an important obstacle to
advance in Kopczyński’s and the Neutral Letter conjectures is the lack of such tools. In fact,
as we will see, some candidate objectives to disprove the Neutral Letter Conjecture can be
described in this framework, namely MinParityω and the ω-Büchi objective, defined by

ω-Büchi = {w ∈ ωω | |w|i is infinite for some i}.

Both these objectives are Σ0
3-complete. Their positionality was not known prior to our work,

and they are drastically altered when adding a neutral letter.

3It is easy to encode vertex-labels into edge-labels, and therefore if an objective is edge-labelled positional
then it is vertex-labelled positional; but the converse is not true.

4During the preparation of this manuscript, a positional Π0
3-complete objective has also been pro-

posed [COV24].
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1.2. Contributions. We provide two ways of defining lexicographic products of families
of objectives indexed by ordinals, namely, the max-lexicographic product and the min-lex-
icographic product. We show that these operations preserve positionality (Theorems 3.1
and 4.3). The proofs rely on providing adequate constructions of well-ordered monotone
universal graphs for the two lexicographic products. We now discuss some further results
and consequences.

Topological completeness results. We study the objective

MaxParityα = {w ∈ αω | lim supw is odd5},

for countable ordinals α. Extending the results of [Skr13], we prove completeness of
MaxParityα for the corresponding level in the difference hierarchy over Σ0

2 (Theorem 3.6).
So, for infinitely many levels of the difference hierarchy spanning the whole ∆0

3, we obtain
natural positional objectives complete for these levels. We believe that defining such a class
of complete objectives which are positional and admit a simple universal graph (see Section 3)
is key to achieving a complete understanding of positionality within ∆0

3, which is still elusive.
On the other hand, min-lexicographic products of trivial objectives can go beyond ∆0

3.
This is the case of ω-Büchi and the MinParityα objectives, which are Wadge-complete for
Σ0

3 for infinite α (Theorem 4.5). As far as we are aware, these are the first known positional
objectives in this class. This gives a first step into the possibility of exploring positionality
beyond ∆0

3.

Closure under addition of neutral letters for some objectives. If an objective admits
a well-ordered monotone universal graph, then it is not only positional, but its extension
with a neutral letter is positional too [Ohl23] (conversely, the restriction of a positional
objective to a subset of colours always remains positional). Therefore, all positionality results
presented in this paper hold for both the objectives and their extensions with neutral letters.
This is in particular the case for ω-Büchi and MinParityα (for any ordinal α), but these two
conditions were up to this date the best potential candidates to disprove the Neutral Letter
Conjecture. Thus, our results suggest that adding neutral letters may preserve positionality
in general.

Locally finite memory. Casares and Ohlmann [CO25a] recently proposed to study ob-
jectives W with locally finite memory, meaning that in any game with objective W , if
Eve has a winning strategy then she has a winning strategy that only uses finitely many
memory states for each game vertex. They proved that objectives admitting well-monotone
universal graphs which are well-partial-orders (wpo) have locally finite memory, and that this
class (which broadly generalises positional objectives or finite memory objectives) is closed
under finite intersections [CO25a, Corollary 6.11]. Our construction can also be applied to
well-monotone graphs which are wpo’s, which proves that this class of objectives is also
closed under infinite (min and max) lexicographic products.

5An ordinal is odd if it rewrites as β + n, with β either 0 or a limit ordinal and n < ω odd. The use of
odd ordinals is crucial in this definition, the reason being that limit ordinals are even, and should be rejected
for positionality.
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Structure of the paper. We first recall the necessary definitions, including finite lexico-
graphic products, in Section 2. Then we present max-lexicographic products in Section 3
and (the more complex) min-lexicographic products in Section 4.

2. Preliminaries and finite lexicographic products

Graphs. In this paper, graphs are directed, edge-coloured, typically infinite, and may have
sinks (vertices with no outgoing edges). Formally, a C-graph G, where C is an arbitrary set
of colours, is given by a set of vertices V (G) and a set of edges E(G) ⊆ V (G)× C × V (G).

We will usually denote edges as v
c−→ v′. A path in a graph G is a sequence of edges in E(G)

with matching endpoints,

v0
c0−→ v1

c1−→ v2
c2−→ . . .

A path can be finite (even empty) or infinite. We say that it is a path from v0, and, if it is
finite and contains i edges, towards vi. The finite or infinite word c0c1 . . . is called the label
of the path. When there is a path from v towards v′, we say that v′ is reachable from v in G.

A morphism between two C-graphs G and H is a map ϕ : V (G)→ V (H) such that for

every edge v
c−→ v′ ∈ E(G), it holds that ϕ(v)

c−→ ϕ(v′) is an edge in G(H). We write G→ H
if we just want to state the existence of such a morphism. Note that ϕ need not be injective
or surjective. Morphisms compose into morphisms. A subgraph G′ of G is obtained from
G by removing vertices and edges of G; note that in that case G′ → G. If R ⊆ V (G), the
subgraph of G obtained by removing all vertices in V (G) \R and keeping all edges between
vertices in R is called the restriction of G to R. Given a vertex v ∈ V (G), we let G[v] denote
the restriction of G to vertices reachable from v. The size of a graph G is the cardinal

|V (G)|. If v c−→ v′ ∈ E(G) then we say that v is a c-predecessor of v′ and v′ is a c-successor

of v. An edge v
c−→ v is called a loop around v.

Ordered graphs, monotonicity, and directed sums. We will often consider ordered
graphs, which are pairs (G,≥) where ≥ is a (partial) order over V (G). By a slight abuse of
notation, we sometimes omit ≥ from the notation of an ordered graph. We will pay special
attention to graphs in which the order satisfies some of the following properties:

• is total,
• is well-founded (any non-empty subset has a minimal element),
• is a well-order (total and well-founded),
• is a well-partial order (is well-founded and contains no infinite antichain).

An ordered C-graph (G,≥) is said to be monotone if for all u, v, u′, v′ ∈ V (G) and c ∈ C
we have

u ≥ v c−→ v′ ≥ u′ in G =⇒ u
c−→ u′.

In proofs, it is sometimes convenient to break monotonicity into left-monotonicity (u ≥ v c−→
v′ =⇒ u

c−→ v′) and right-monotonicity (v
c−→ v′ ≥ u′ =⇒ v

c−→ u′); it is a direct check that
monotonicity is equivalent to their conjunction.

Given a family of (ordered) C-graphs (Gµ)µ<α, where α is an arbitrary ordinal, we

define their directed sum
←−∑

µ<αGµ to be the disjoint union of the Gµ’s with added edges
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from each Gµ to all the graphs before it in the sequence. Formally, G =
←−∑

µ<αGµ is a graph
with vertices V (G) =

⊔
µ<α V (Gµ)× {µ}, and edges

(v, µ)
c−→ (v′, µ′) ∈ E(G) if µ > µ′, or [µ = µ′ and v

c−→ v′ ∈ E(Gµ)].

Note that for all µ, it holds that Gµ → G. If the Gµ’s are ordered, then so is their sum, by
the order

(v, µ) ≥ (v′, µ′) if µ > µ′ or [µ = µ′ and v ≥ v′ in Gµ].

Observe that for any property X among being totally ordered, well-founded, or monotone,
if the Gµ’s have property X then so does their directed sum. By a slight abuse, when the
V (Gµ)’s are disjoint sets, we define for convenience the sum over

⊔
µ<α V (Gµ) instead of⊔

µ<α V (Gµ)× {µ}. In the case where the Gµ’s are all equal to some (ordered) graph G, we

denote their directed sum by G
←
⊗ α.

Objectives and universality. A C-objective is a language6 of infinite words W ⊆ Cω. In
this paper, we will always only consider prefix-independent objectives, meaning those such
that cW = W for all c ∈ C (equivalently, membership of a word in W is not affected by
addition or removal of a finite prefix).

We say that a C-graph G satisfies an objective W if the label of any of its infinite paths
belongs to W . In particular, a graph without infinite paths satisfies any objective.

Given a cardinal κ, we say that a C-graph U is κ-universal for W if

• U satisfies W ; and
• every graph G of size < κ and satisfying W admits a morphism to U , i.e. G→ U .

Next lemma indicates that, for prefix-independent objectives, it is in fact sufficient to
find (monotone, well-ordered) universal graphs with weaker requirements.

Lemma 2.1 ([Ohl23, Lemma 4.5]). Let W be a prefix-independent C-objective, κ a cardinal,
and U be a C-graph such that:

• U satisfies W ; and
• for all graphs G which satisfy W and have size < κ, there is a vertex v ∈ V (G) such that
G[v]→ U .

Then U
←
⊗ κ is κ-universal for W .

Following [Ohl23], we sometimes say that a graph U as above is almost (κ,W )-universal.

Proof. Let U be such a graph and let G be a graph < κ satisfying W ; we should prove that

G→ U
←
⊗ κ. By hypothesis, there is a vertex v0 such that G[v0]→ U .

Now let λ be any ordinal and assume constructed vertices vµ for µ < λ. Then we let
Gλ = G \

⋃
µ<λG[vµ] be the restriction of G to vertices which are not reachable from any of

the vµ’s. Since |Gλ| < κ, there is vλ such that Gλ[vλ]→ U .
Now note that G is the disjoint union of the Gλ[vλ]’s, and moreover Gλ is empty if

λ ≥ κ. Moreover, any edge in G is either part of some Gλ[vλ], or goes from Gλ[vλ] to Gλ′ [vλ′ ]

for some λ > λ′. We conclude that G→ U
←
⊗ κ by mapping Gλ[vλ] in the λ-th copy of U for

each λ.

6Formally, an objective is a pair (C,W ), where C is non-empty and W ⊆ Cω. For simplicity, we just
write objectives as W , as this does not create confusion or ambiguity.
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Universal graphs for the study of positionality and memory in games. We introduce
definitions of games and positionality for completeness. However, in all the paper we will
study positionality through the lenses of universal graphs (by using Theorem 2.2 below),
and will not directly use the game-based definition of positionality.

A W -game is given by a sinkless C ∪ {ε}-graph, together with a (prefix-independent)
C-objective W and a partition of the vertices into those controlled by one player, called Eve,
and her adversary, called Adam. Players play by moving a token in the graph for an infinite
amount of time; the player controlling the current vertex choses which edge to take. The
result of a play is an infinite path in the game graph. Who wins the play is determined
by the projection of the labels on C: Eve wins if this projection is finite or belongs to W ,
otherwise Adam is the winner. This definition makes ε a neutral letter. A strategy (for
Eve) is a function assigning to each finite path ending in a vertex controlled by Eve the next
edge she should take. Such a strategy is winning from a vertex v if all infinite paths from v
following the strategy are winning.

A strategy is positional if it can be described by a function from the set of Eve’s vertices
to edges; the strategy always points to the same outgoing edge, independently of the past of
the play. An objective W is positional7 if for every W -game, Eve has a positional strategy
σ such that if she has a winning strategy from a vertex v, she wins from v using strategy σ.

Theorem 2.2 ([Ohl23, Theorem 3.1]). A prefix-independent objective W is positional if and
only if for every cardinal κ there exists a well-ordered monotone κ-universal graph for W .

In the following, we will use the term “positional objective” as a synonym of an objective
admitting well-ordered monotone κ-universal graphs for all κ. More generally, we say that
a prefix-independent objective W has wpo-monotone graphs if for every cardinal κ, there
exists a well-partially ordered monotone κ-universal graph for W . Such objectives are
interesting because they have locally finite memory, are closed under finite intersections, and
generalise ω-regular objectives, as shown in [CO25a].

Trivial objectives. For a non-empty set of colours C, we call TWC = Cω the trivially
winning objective, and TLC = ∅ ⊆ Cω the trivially losing objective over C. We will write
TWc and TLc if C is the singleton {c}. These objectives are positional: it is easy to see

that the single vertex C-graph •
C

with all possible loops is κ-universal for TWC for all κ.
For TLC , the graph of the order relation for cardinal κ is κ-universal. This graph, that we

denote •
←C
⊗ κ, has as set of nodes all ordinals < κ and contains an edge λ

c−→ λ′ for every
c ∈ C and ordinals λ > λ′.

Finite lexicographic products of objectives. Let C0 and C1 be two disjoint sets of
colours, and let C = C0 ∪ C1. Given an infinite word w ∈ Cω and i ∈ {0, 1}, we let πi(w)
denote the (finite or infinite) word obtained by restricting w to letters in Ci.

We then define the max-lexicographic product of two prefix-independent objectives
W0 ⊆ Cω

0 and W1 ⊆ Cω
1 by

W0 ⋊W1 = {w ∈ Cω | [π1(w) is infinite and belongs to W1]

or [π1(w) is finite and π0(w) ∈W0]}.

7It is not known whether the presence of a neutral colour ε affects positionality. Theorem 2.2 concerns
positionality in the presence of a neutral colour due to the way we have defined games here.
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Note that W0 ⋊W1 is prefix-independent. This operation is associative, and the min-lexico-
graphic product of p conditions is

W0 ⋊ · · ·⋊Wp = {w ∈ Cω | πℓ(w) ∈Wℓ, where ℓ is maximal such that πℓ(w) is infinite}.
Clearly, this operation is not commutative. We write W0 ⋉W1 to denote W1 ⋊W0; we call
it the min-lexicographic product of the objectives, for which more importance is given to
W0. The difference will be important once we study infinite products. We define infinite
max-lexicographic products in the next section, and later consider (infinite) min-lexicographic
products in Section 4.

In the rest of this section we discuss an associated operation of max-lexicographic product
of two ordered graphs over disjoint sets colours. Given an ordered C0-graph (G0,≥0) and
an ordered C1-graph (G1,≥1), where C0 ∩C1 = ∅, we define (G0 ⋊G1,≥) to be the ordered
C0 ∪ C1-graph with vertices V (G0 ⋉G1) = V (G0)× V (G1) ordered by

(v0, v1) ≥ (v′0, v
′
1) ⇔ v1 >1 v

′
1 or [v1 = v′1 and (v0 ≥ v′0)].

and whose edges are

E(G0 ⋉G1) = {(v0, v1)
c1−→ (v0, v

′
1) | c1 ∈ C1 and v1

c1−→ v′1 ∈ E(G1)} ∪

{(v0, v1)
c0−→ (v′0, v

′
1) | c0 ∈ C0 and [v1 >1 v

′
1 or

(v1 = v′1 and v0
c0−→ v′0 ∈ E(G0))]}.

Once again, it is immediate to check that, if G0 and G1 are well-ordered, monotone, or
well-partially ordered, then so is their lexicographic product.

Ohlmann8 related finite lexicographic products of positional objectives with lexicographic
products of their universal graphs as follows.

Theorem 2.3 ([Ohl23, Theorem 5.2]). Let W0 ⊆ Cω
0 , W1 ⊆ Cω

1 be prefix-independent
objectives with C0 ∩ C1 = ∅. Let κ be a cardinal, and assume that the graphs U0 and U1 are
κ-universal for W0 and W1, respectively. Then U0 ⋊ U1 is κ-universal for W0 ⋊W1.

As a direct consequence, we get the following closure properties.

Corollary 2.4. Prefix-independent positional objectives, as well as prefix-independent objec-
tives having wpo-monotone graphs, are closed under finite lexicographic products.

As an important example, the parity condition can be defined as the lexicographic
product

Parityd = TW0 ⋊ TL1 ⋊ TW2 ⋊ · · ·⋊ TLd−1 ⋊ TWd,

where d is an even integer. Then, by Theorem 2.3 and κ-universality of •
c

and •
←c
⊗ κ for

TWc and TLc, respectively we get that the graph

•
0

⋊ (•
←1
⊗ κ)⋊ •

2

⋊ · · ·⋊ (•
←
⊗

d−1
κ)⋊ •

d

is κ-universal for Parityd. A closer examination reveals that this graph corresponds to
Walukiewicz’s signatures [Wal96], or to Emerson and Jutla’s positionality proof [EJ91] (we
also refer the reader to [Ohl21, Chapter 5] for discussions around this construction).

8Formally, it was only proved for totally ordered graphs in [Ohl23], but the proof for non-totally ordered
graphs, presented in [CO25a] for completeness, is the same.
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The purpose of this paper is to introduce extensions of finite lexicographic products to in-
finite families of objectives, indexed by ordinals, and then to give corresponding constructions
over universal graphs in order to generalize Theorem 2.3 and obtain closure properties. As
we will see, in the infinite case max-lexicographic products and min-lexicographic products
behave quite differently. We treat them separately in Sections 3 and 4.

3. Infinite max-lexicographic products and topological completeness on the
difference hierarchy

3.1. Definitions and statement of the result. Fix a countable ordinal α. We fix a family
of pairwise disjoint sets of colours (Cλ)λ<α and a family of prefix-independent objectives
(Wλ)λ<α with Wλ ⊆ Cω

λ . We define C =
⋃

λ<αCλ and C<λ, C≤λ, C>λ, C≥λ as expected.
For a word w ∈ Cω, and an ordinal λ < α, we let πλ(w) ∈ C∗λ ∪Cω

λ denote the (finite or
infinite) restriction of w to colours in Cλ. For a (finite or infinite) word w = c0c1 · · · ∈ C∗∪Cω,
we also let ind(w) = λ0λ1 · · · ∈ α∗ ∪ αω denote the (finite or infinite) word of ordinals such
that for all i we have wi ∈ Cλ. Given Λ = λ0λ1 · · · ∈ αω, recall that

lim supΛ = min
i<ω

sup{λi, λi+1, . . . }.

We note that lim supΛ is always defined and ≤ α, as it is a min of a set of ordinals ≤ α.
We define the max-lexicographic product of the family (Wλ)λ<α to be

max-lex∏
λ<α

Wλ = {w ∈ Cω | πλ(w) ∈Wλ where λ = lim sup ind(w)}.

Note that for w to be in the product, it should be that in particular πλ(w) is an infinite
word, where λ = lim sup ind(w), which means that the limsup of the indices is seen infinitely
often.

Our main result in this section is the following.

Theorem 3.1. Prefix-independent positional objectives, as well as prefix-independent objec-
tives having wpo-monotone graphs, are closed under countable max-lexicographic products.

3.2. Universal graph for max-lexicographic products. This subsection is devoted to
the proof of Theorem 3.1

Colour-increasing unions. We start by establishing the following weakening of Kopczyński’s
conjecture, which will be the key lemma in the proof of Theorem 3.1 and may be of indepen-
dent interest.

Theorem 3.2. Let (Cλ)λ<α be a family of sets colours satisfying Cλ ⊆ Cλ′ for λ < λ′ < α,
where α is countable. Let (Wλ)λ<α be a family of prefix-independent positional objectives
(resp. prefix-independent objectives having wpo-monotone graphs) over the respective sets of
colours such that for each λ < λ′ it holds that Cω

λ ∩Wλ′ =Wλ. Then the union of the Wλ’s
is positional (resp. has wpo-monotone graphs).

We will say that a family of objectives as above is colour-increasing. The proof is
a simple application of Lemma 2.1.
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Proof. Let κ be a cardinal and let U0, U1, . . . be well-ordered (resp. wpo) monotone κ-uni-
versal graphs for the respective objectives. Let W be the union of all the Wλ’s. Let

U =
←∑

λ<αUλ; we claim that U is almost (κ,W )-universal and therefore U
←
⊗ κ is (κ,W )-

universal. First, observe that U indeed satisfies W : this follows from prefix-independence
and the fact that each Uλ satisfies Wλ ⊆W .

Now, consider a graph G of size < κ satisfying W . We should prove that for some v,
G[v]→ U . We claim that there exists v ∈ V (G) such that all colours appearing on paths
from v belong to Cλ for some λ. Assume by contridiction that this fails. Then, by an easy
induction we obtain a path visiting edges with colours in Cλ0 , Cλ1 , . . . where we choose
λ0, λ1, . . . , to be a cofinal sequence of α; such a path cannot satisfy any Wλ and therefore it
does not satisfy W .

We conclude that for some v and some λ, it holds that G[v] satisfies W ∩ Cω
λ = Wi.

Therefore G[v]→ Ui which concludes since Ui → U .

Proof of Theorem 3.1. For α′ ≤ α, we let W<α′ denote the max-lexicographic product of
the family (Wλ)λ<α′ . To prove the Theorem 3.1, we proceed by induction over α′. There
are two cases, corresponding to α′ being a successor or a limit. First, we prove that for
successor ordinals, our definition behaves just like finite lexicographic products.

Lemma 3.3. For any α′ < α, we have

W<α′+1 =W<α′ ⋊Wα′ .

Proof. Let w ∈ Cω
<α′+1.

• First assume that πα′(w) is infinite. Then lim sup ind(w) = α′ and we have

w ∈W<α′+1 ⇔ πα′(w) ∈Wα′ ⇔ w ∈W<α′ ⋊Wα′ .

• Otherwise, πα′(w) is finite, and we let w′ denote a suffix of w with πα′(w′) = ϵ. Then we
have

w ∈W<α′+1 ⇔ w′ ∈W<α′+1 ⇔ w′ ∈W<α′ ⇔ w ∈W<α′ ⋊Wα′ .

On the other hand, for limit ordinals, our definition resembles a union.

Lemma 3.4. For any limit ordinal α′ ≤ α, we have

W<α′ =
⋃
λ<α′

W<λ.

Proof. It is a direct check that for λ < α′ we have W<α′ ∩ Cω
<λ = W<λ, and thus the

right-to-left inclusion holds. Conversely, let w ∈W<α′ . Then λ = lim sup ind(w) is ≤ α′ and
πλ(w) is infinite, so λ < α′. Thus w ∈Wλ ⊆W<λ+1.

Together, Lemmas 3.3 and 3.4 give an alternative inductive definition of the max-
lexicographic product. Now note that for any α′ < α, the above union is colour-increasing:
(C<λ)λ<α′ is an increasing sequence of sets of colours, W<λ ⊆ Cω

<λ and for any λ < λ′ we
have C<λ ∩W<λ′ = Wλ. Thus Theorem 3.1 holds by induction on α: the successor case
follows from Lemma 3.3 and Theorem 2.3 and the limit case follows from Lemma 3.4 and
Theorem 3.2.
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3.3. Max-Parity: Positionality and topological completeness. We now discuss the
important case of the Max-Parity languages. Let Cλ = {λ} for λ < α and

Wλ =

{
TLλ if λ is even,9

TWλ otherwise.

We define the Max-Parity objective MaxParityα as the lexicographic product of the
Wλ’s for λ < α. Equivalently, it can be written as:

MaxParityα = {w ∈ αω | lim supw is odd}.
Note that if λ = lim supw is an odd ordinal, it is necessarily non-limit, and therefore πλ(w)
is infinite (this justifies our choice of odd priorities to be winning, rather than the more
standard even ones).

Corollary 3.5. For every countable ordinal α, MaxParityα is positional.

The universal graph obtained by unravelling the above proof, using the graphs •
c

and

•
←c
⊗ κ as starting blocks for the trivially winning and trivially losing objectives, provides

a natural generalisation of Walukiewicz’s signatures [Wal96] to ordinal priorities. We provide
an explicit construction of such a graph in Appendix A.

Completeness in the difference hierarchy. We first recall the definition of the difference
hierarchy (see also [Kec95, Chapter 22.E]). For a sequence of sets (Aη)η<α, Aη ⊆ Cω, we
define Dα

(
(Aη)η<α) as the set containing the elements w ∈

⋃
η<αAη where the least η < α

such that w ∈ Aη has parity opposite to that of α. The class Dα(Σ
0
2) consists of the sets

that can be described as Dα

(
(Aη)η<α) for an increasing sequence of Σ0

2-sets. The class

Dα(Π
0
2) consists of the sets that are complements of Dα(Σ

0
2)-sets, or equivalently, those of

the form Dα

(
(Bη)η<α) for a decreasing10 sequence of Π0

2-sets. (Note that D1(Σ
0
2) = Σ0

2 and

D1(Π
0
2) = Π0

2.)
In the remainder of the section, we show that the languages MaxParityα are complete

(with respect to continuous reductions) for infinite levels of the difference hierarchy.
Recall that a function h : Cω → Xω is continuous if and only if the value of the nth letter

of h(w) only depends on a finite prefix of w; we refer to [Kec95] for a formal definition. Since
our objectives in Xω admit neutral letters, we will assume that the functions are 1-Lipschitz,
i.e. the nth letter of h(w) depends only on the first n letters of w. Such functions can be

represented by f : C∗ → X with h = f̃ : Cω → Xω defined as
(
f̃(w)

)
n
= f(w0w1 · · ·wn−1).

Theorem 3.6. For each even α < ω1, the language MaxParityα+1 is complete for Dα(Σ
0
2).

For each odd α < ω1, the language MaxParityα+1 is complete for Dα(Π
0
2). For each limit

ordinal α < ω1, the language MaxParityα is complete for Dα(Σ
0
2).

Before proving Theorem 3.6, we need an auxiliary result (Lemma 3.7), that might be of
independent interest.

We let coBuchi ⊆ {1, 2}ω be the language of words where 2 appears finitely often (1
serves as a neutral letter in this language). We recall that coBuchi is complete for Σ0

2,

9We recall that the parity of an ordinal α is the parity of the unique n < ω such that α rewrites as α′ + n
for α′ either 0 or a limit ordinal.

10Note that the union of an increasing sequence of Π0
2-sets can be Σ0

3-complete.
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that is, for every Σ0
2-set A ⊆ Cω there is a continuous function h : Cω → {1, 2}ω such that

h−1(coBuchi) = A. As the language coBuchi admits a neutral letter, we can assume that

such a reduction h is induced by a function f : C∗ → {1, 2}, such that h = f̃ . In this case
we say that f represents the reduction h.

Given a function f : C∗ → {1, 2} we define JfK as the set of words w ∈ Cω such that

f(w0w1 · · ·wn−1) = 2 for only finitely many n. In other words JfK = f̃−1(coBuchi).
Let f, g : C∗ → {1, 2}. We write f ≤ g if for all x ∈ C∗, g(x) = 1 implies f(x) = 1

(i.e. f(x) ≤ g(x)). Note that if f ≤ g, then JfK ⊇ JgK. We say that a sequence of functions
(fη)η<α, with fη : C

∗ → {1, 2}, is pointwise decreasing if fη ≥ fη′ for η ≤ η′ < α.

Lemma 3.7. Let α < ω1 and let (Aη)η<α be an increasing sequence of Σ0
2-subsets of

Cω. Then, there exists a pointwise decreasing sequence of functions (fη)η<α such that
fη : C

∗ → {1, 2} is a representation of a reduction of Aη to coBuchi (that is, JfηK = Aη).

Proof. We prove the following stronger statement for all α < ω1 by transfinite induction:

For every two functions gbig ≤ gsmall and every sequence (Aη)η<α ⊆ Cω such that

JgsmallK ⊆ Aη ⊆ JgbigK for all η < α,

there is a pointwise decreasing sequence of functions (fη)η<α such that:

for all η ≤ η′ < α : JfηK = Aη and gbig ≤ fη ≤ fη′ ≤ gsmall.

(⋆)

First, we introduce two operators performing union and intersection of representa-
tions. Let f, g : C∗ → {1, 2} be two functions. Consider their point-wise maximum
h = max(f, g) : C∗ → {1, 2}. Then f, g ≤ h and JhK = JfK ∩ JgK (maximum contains
finitely many 2s if and only if both of them do). In particular, if JfK ⊆ JgK, then JhK = JfK.

We define a function union(f, g) : C∗ → {1, 2}. For x ∈ C∗, let xg be the longest
non-strict prefix of x such that g(xg) = 2, and let x′f be the longest strict prefix of x such

that f(x′f ) = 2 (both can be empty if there is no such prefix). We define:

union(f, g) =


1 if f(x) = 1,

1 if f(x) = 2 and |xg| ≤ |x′f |,
2 if f(x) = 2 and |xg| > |x′f |.

Note that the function union(f, g) is defined in an asymmetric way and union(f, g) ≤ f .
We claim that Junion(f, g)K = JfK ∪ JgK, in particular, Junion(f, g)K = JgK if JfK ⊆ JgK. The
inclusion JfK ⊆ Junion(f, g)K follows from the inequality union(f, g) ≤ f . Let w ∈ JgK. Since
g(w) eventually only contains 1s, there is a constant k such that for every prefix x of w,
|xg| ≤ k. Therefore, for sufficiently long prefixes, we are always on one of the two first cases.
Finally, let w /∈ JfK ∪ JgK; we build an infinite sequence of prefixes (xi)i>0 of w such that
union(f, g)(x) = 2. Assume that xi has been built and let x′i be a prefix of w of length > |xi|
such that g(x′) = 2. Let xi+1 be the first extension of x′i such that f(xi+1) = 2 (possibly
xi+1 = x′i). By definition of union, we have union(f, g)(xi+1) = 2, as desired.

We show Statement (⋆) by induction on α. Let α = α′ + 1 be a successor ordinal. Let
f ′α′ be a representation of any reduction of Aα′ to coBuchi, and let

fα′ = max(union(gsmall, f
′
α′), gbig).
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By the previous remarks, we have that gbig ≤ fα′ ≤ gsmall and Jfα′K = Aα′ . Now, apply the
induction hypothesis (⋆) on fα′ ≤ gsmall and the sequence (Aη)η<α′ . The obtained sequence,
together with fα′ , is as desired.

Let now α be a limit ordinal. Let α0 < α1 < . . . a sequence of ordinals < α with
α = supαi. Let f

′
i be a representation of any reduction from Aαi to coBuchi. We define by

induction:

f0 = max(union(gsmall, f
′
0), gbig) and fi+1 = max(union(fi, f

′
i+1), gbig).

In this way, we obtain that gbig ≤ . . . f2 ≤ f1 ≤ f0 ≤ gsmall and JfiK = Aαi . Now, for each
i apply the induction hypothesis with functions fi+1 ≤ fi and the sequence (Aη)αi<η<αi+1

(note that this sequence has order type < α). The concatenation of the obtained sequences
is as desired.

We are now ready to prove Theorem 3.6.

Proof of Theorem 3.6. We begin by showing that MaxParityα+1 belongs to Dα(Σ
0
2) if α is

even, and to Dα(Π
0
2) if α is odd. Let Aη be the set of sequences w ∈ (α+1)ω where elements

strictly larger than η appear only finitely many times (equivalently, lim supw ≤ η). These
sets are clearly in Σ0

2. Let w ∈ αω. We have:

w ∈ Dα

(
(Aη)η<α) ⇐⇒ lim supw is < α and has parity opposite to α.

Therefore, for even α, MaxParityα+1 equals Dα

(
(Aη)η<α), and for odd α, MaxParityα+1

equals the complement of Dα

(
(Aη)η<α).

Now for the opposite direction, we want to show how to reduce an arbitrary set in
Dα(Σ

0
2) (resp. in Dα(Π

0
2)) to MaxParityα+1, if α even (resp. α odd). We prove the third

statement about limit ordinals at the end.
Assume α even and let X = Dα

(
(Aη)η<α), for (Aη)η<α an increasing sequence of

Σ0
2-sets in some space Cω. By Lemma 3.7, there is a pointwise decreasing sequence of

functions (fη)η<α such that fη : C
∗ → {1, 2} and JfηK = Aη. We define a representation

f : C∗ → (α+ 1) of a reduction of X to MaxParityα+1 by:

f(x) =

{
α if fη(x) = 2 for all η,

inf{η < α | fη(x) = 1} if not.

It remains to see that for w ∈ Cω, f̃(w) ∈ MaxParityα+1 if and only if w ∈ X. Let

f̃(w) = η1η2η3 . . . , and let ηsup = lim supi<α ηi. First, if ηsup = α (even), then w /∈ JfηK = Aη

for any η, so w /∈ X. If ηsup < α, then ˜fηsup(w) eventually only contains 1s, since the sequence

(fη)η<α is decreasing. Therefore, w ∈ JfηsupK = Aηsup . Also, for η < ηsup, the sequence f̃η(w)
contains infinitely many 2s (in all positions where f(w) takes the value ηsup. We conclude
that ηsup is the smallest ordinal such that w ∈ Aηsup , so:

w ∈ X ⇐⇒ ηsup is odd ⇐⇒ f̃(w) ∈ MaxParityα+1,

as desired.
For the case α odd, let X be a set such that its complement equals some Dα

(
(Aη)η<α)

for a sequence of Σ0
2-sets. Defining f and ηsup as before, we obtain:

w /∈ X ⇐⇒ ηsup is even ⇐⇒ f̃(w) /∈ MaxParityα+1,

showing that MaxParityα+1 is complete in Dα(Π
0
2).
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Finally, we prove that MaxParityα is complete for Dα(Σ
0
2) when α is a limit ordinal.

It suffices to show that MaxParityα+1 reduces to MaxParityα, as we have already proven
Dα(Σ

0
2)-hardness of the former. Let (γi)i<ω be an increasing sequence of ordinals < α such

that α = sup γi. It suffices to consider the function f : (α + 1)ω → α that replaces the
occurrences of α in a position i by γi.

This concludes the proof of Theorem 3.6.

As far as we are aware, this constitutes the first positionality proof for complete languages
for infinite levels of the difference hierarchy. This sets a first stone in the systematic study of
positional objectives within ∆3, the natural topological generalisation of ω-regular objectives.

4. Infinite min-lexicographic products

We introduce infinite min-lexicographic products of a sequence of winning objectives. Intu-
itively, the objectives at the beginning of the sequence have priority over those that appear
later. The sequence can be indexed by any ordinal. We show that if winning conditions in
the product are positional then the min-lexicographic product objective is positional too
(Theorem 4.8). For this we provide an adequate construction of an universal graph from
universal graphs for the components.

As we shall see, min-lexicographic products turn out to be more complex than max-lexi-
cographic ones, for different aspects listed below.

• Finding the natural definition of infinite min-lexicographic products indexed over ordinals>
ω is not obvious (see also Remark 4.2 below for more explanations).
• Topologically, min-lexicographic products generally lie beyond ∆3 (for instance, the
product of ω-many trivially winning conditions is in fact Σ3-complete).
• Constructions (and universality proofs) establishing their positionality turn out to be
substantially more involved.

4.1. Definitions and statement of the result.
Setting. In this section, we fix a cardinal κ ≥ 2, an ordinal α, a family of pairwise
disjoint sets of colours (Cλ)λ<α, and a family of prefix-independent objectives (Wλ)λ<α with
Wλ ⊆ Cω

λ for all λ. We assume that each Wλ has a κ-universal well-founded monotone graph
(Uλ,≥λ)λ<α. We will use C =

⋃
λ<αCλ, as well as C<λ, C≤λ, C>λ, C≥λ defined as expected.

For a word w ∈ Cω, and an ordinal λ < α, we let πλ(w) ∈ C∗λ ∪ Cω
λ denote the (finite or

infinite) projection of w to colours in Cλ. Likewise, we let π<λ(w) denote the projection of
w to colours in C<λ.

Min-lexicographic products. We say that a word w is λ-supported11 if πλ(w) is infinite
and π<λ(w) is finite. A word is supported if it is λ-supported for some λ. In other words, a
word is λ-supported if (i) after a finite prefix, λ is the smallest index of colours that appears,
and (ii) a colour from Cλ appears infinitely often. In particular, λ is uniquely determined
by w. For example, if α = ω + 1 and Cλ = {λ}, then the word 0ω1ω2ω · · · ∈ Cω is not
supported, and the word 12131415 . . . is 1-supported.

11Formally, being λ-supported depends on the sequence (Cλ)λ<α. We do not explicitly include this
dependence in the notation for simplicity.
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We define the min-lexicographic product of (Wλ)λ<α to be

min-lex∏
λ<α

Wλ = {w ∈ Cω | w is λ-supported and πλ(w) ∈Wλ}.

Note that for α < ω, every word is supported, and thus in this case our definition coincides
with finite min-lexicographic products.

Lemma 4.1. The min-lexicographic product is associative. Formally, let (µi)i<β be a strictly
increasing sequence of ordinals that is cofinal in α, that is, µi < α and for all λ < α there is
i such that µi > λ. Then

min-lex∏
λ<α

Wλ =
min-lex∏
i<β

 min-lex∏
µi≤λ<µi+1

Wλ

 .

Proof. Let W be the objective on the left of the equality and W̃ the one on the right.
Assume that w ∈W . Then, w is λ-supported for some λ < α (for the α-partition of the set
of colours) and πλ(w) ∈Wλ. Let i be the unique ordinal such that µi ≤ λ < µi+1. Then, w
is i-supported (for the β-partition of the set of colours), and πi(w) is, in turn, λ-supported

and πλ(πi(w)) = πl(w) ∈Wλ, so πi(w) ∈
∏min-lex

µi≤λ<µi+1
Wλ and w ∈ W̃ .

Conversely, assume w /∈ W . If w is supported, we conclude using the same argument
as above. Assume w is not supported (for the α-partition of the set of colours). Then,

for all i < β, πi(w) is not λ-supported for any µi ≤ λ < µi+1, so πi(w) /∈
∏min-lex

µi≤λ<µi+1
, so

w /∈ W̃ .

Remark 4.2. Another possible definition of min-lexicographic product could be

W ′ = {w ∈ Cω | λ0 = mininf(w) is defined and πλ0(w) ∈Wλ0},
where mininf(w) is the minimal λ < α such that there are infinitely many occurrences of
colours from Cλ in w. The two definitions coincide for α ≤ ω, but they are different for
α = ω + 1. Indeed, take Cλ = {λ}, Wi = TLi for i < ω and Wω = TW{ω} (we write TW{ω}
instead of TWω to avoid any ambiguities here). Observe that mininf(0ω1ω2ω . . . ) = ω while
this word is not supported. So this word is not in the min-lexicographic product, but it is in
W ′, showing that the two definitions are different.

However, this modified definition has several disadvantages, that already appear for the
example above. Firstly, the modified operation is not associative. Indeed, the product of
the Wi’s for i < ω is exactly TLω, the trivially losing objective over ω (for both definitions).
Hence, w /∈ TLω ⋉ TW{ω}, so TLω ⋉ TW{ω} ̸=W ′.

Moreover, W ′ is even not positional: to win in the game from Figure 2, Eve cannot use
a positional strategy. So the modified definition does not preserve positionality. As we will
show, our definition does preserve positionality.

Main result. We can now state the main result of the section: the closure of positional
objectives under infinite min-lexicographic products.

Theorem 4.3. Prefix-independent positional objectives, as well as prefix-independent objec-
tives having wpo-monotone graphs, are closed under arbitrary min-lexicographic products.
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Figure 2: A game in which Eve requires memory to ensure objective W ′, for instance by
playing a path labelled 0ω1ω . . . .

4.2. Applications: ω-Büchi and Min-Parity. Before moving on to the proof of The-
orem 4.3 in Subsection 4.3, which spans most of the remaining section, we present two
applications.

ω-Büchi. For α = ω, Ci = {i} and Wi = TWi for i < α, the min-lexicographic product
yields:

ω-Büchi = {w ∈ ωω | ∃i, |w|i is infinite},
which one can see as an infinite union of Büchi objectives. Grädel and Walukiewicz [GW06]
proved bi-positionality of ω-Büchi over vertex-labelled game graphs. Theorem 4.3 implies
positionality12 over edge-labelled game graphs; it is easy to see that positionality for the
opponent fails for edge-labelled graphs.

We note that the language ω-Büchi is complete for the class Σ0
3 [Kec95, Exercise 23.2].

Min-Parity. We now discuss the case of the Min-Parity languages. We let W ′λ be the
language over Cλ = {λ} that equals TWλ if λ is even and TLλ if λ is odd. We define
the Min-Parity objective MinParityα as the lexicographic product of the Wλ’s for λ < α.
Equivalently, it can be written as:

MinParityα = {w ∈ αω | w is λ-supported for an even λ}.

Corollary 4.4. For every countable ordinal α, MinParityα is positional.

For finite α, MinParityα is complete for the finite levels of the difference hierarchy over
Σ0

2, as it is interreducible with MaxParityα,
13 whose completeness was shown in Theorem 3.6

(see also [Skr13]). For infinite α, however, MinParityα lies beyond ∆0
3.

Theorem 4.5. For each infinite countable α, the language MinParityα is complete for Σ0
3.

Proof. To show that MinParityα belongs to Σ0
3, we can write it as:

MaxParityα =
⋃
λ<α,
λ even

Sλ , where Sλ = {w ∈ αω | w is λ-supported}.

Now, we can write each Sλ as an intersection of a Σ0
2 and a Π0

2-set:

Sλ = {w ∈ αω | |w|<λ is finite} ∩ {w ∈ αω | |w|λ is infinite}.
In particular, Sλ is a Σ0

3-set. Since Σ0
3 is closed under countable unions, we conclude that

MinParityα belongs to Σ0
3.

12We recall here that in this paper, positionality means “positionality in the presence of a neutral letter”.
For this objective, the fact that adding a neutral letter retains positionality is non-trivial.

13More precisely, for finite α, MinParityα interreduces to MaxParityα for α even and with the complement
of MaxParityα for α odd.
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To show Σ0
3-hardness, we reduce ω-Büchi to MinParityα, for α ≥ ω. If suffices to take

the function f : ωω → αω that replaces a letter i by 2i. In this way, f(w) ∈ MinParityα if
and only if there is a number i that appears infinitely often in w.

4.3. Universal graph for min-lexicographic products. In the rest of the section, we

let W =
∏min-lex

λ<α Wλ. To show positionality of W , we define for every ordinal β the power

graph Uβ, using the universal graphs (Uλ,≥λ)λ<α. We show that Uβ is κ-universal for W
if β is chosen large enough (Theorem 4.8). In all the section β is an arbitrary but fixed
ordinal.

4.3.1. Construction of the universal graph. For each λ, we consider the ordered graph U⊤λ
obtained from Uλ by adding a fresh maximal vertex ⊤λ with no incoming edge and all possible
outgoing edges except towards itself; formally, E(U⊤λ ) = E(Uλ) ∪ ({⊤λ} × Cλ × V (Uλ)).

Note that U⊤λ is well-founded, monotone, and κ-universal for Wλ.

Vertices of Uβ. The vertices of Uβ are the pairs (f, S), where f : α→ β is a non-increasing
function and S : α→

⋃
λ<α V (U⊤λ ) is such that S(λ) ∈ V (U⊤λ ) for all λ < α. Moreover, the

two functions are linked by the condition: For all λ < α,

S(λ) ̸= ⊤λ =⇒ f(λ) > f(λ+ 1). (4.1)

This condition implies that there may be only finitely many λ’s for which S(λ) ̸= ⊤λ.

Order over Uβ. A vertex (f, S) is a pair of sequences. Vertices are ordered by lexicographic
order over the interleaving of these two sequences: f(0), S(0), f(1), S(1) . . . where lesser
coordinates matter the most. To define this formally we introduce a piece of notation. Given
(f, S) ∈ V (Uβ) and λ ≤ α, we let (f, S)<λ be obtained by restricting the domains of f and
S to λ. We let (f, S) > (f ′, S′) if and only if

∃λ < α, (f, S)<λ = (f ′, S′)<λ and [f(λ) > f ′(λ) or (f(λ) = f(λ) and S(λ) >λ S
′(λ))].

Clearly, the above order is total assuming each ≥λ is.
It is also convenient to define (f, S)<λ that is obtained from (f, S) by restricting f to

λ+ 1 and S to λ (equivalently, (f, S)<λ is obtained by extending the map from (f, S)<λ by
λ 7→ f(λ)).

Using this notation, we get that (f, S) > (f ′, S′) if and only if there exists λ < α such
that

[(f, S)<λ = (f ′, S′)<λ and f(λ) > f ′(λ)] or [(f, S)<λ = (f ′, S′)<λ and S(λ) >λ S
′(λ)].

Edges of Uβ. For a colour cλ ∈ Cλ and vertices (f, S), (f ′, S′) ∈ V (Uβ), we let (f, S)
cλ−→

(f ′, S′) ∈ E(Uβ) if and only if

(f, S)<λ > (f ′, S′)<λ or [(f, S)<λ = (f ′, S′)<λ and S(λ)
cλ−→ S′(λ) ∈ E(U⊤λ )].

This definition ensures a property we will often use in proofs:

if (f, S)
cλ−→ (f ′, S′) and cλ ∈ Cλ then (f, S)<λ ≥ (f ′, S′)<λ. (4.2)

meaning that a transition on a colour cλ does not increase the part of the state before
coordinate λ, nor the f component of the coordinate λ.
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4.3.2. Monotonicity and compositionality.
Monotonicity and satisfiability of W . We show that the power graph Uβ is monotone and
satisfies W .

Lemma 4.6. The graph Uβ defined above is:

1. well-founded,
2. monotone,
3. satisfies W ,
4. is a wqo if all (Uλ,≥λ) are wqo’s.

Proof. We prove the four items in order.

1. Towards a contradiction, consider an infinite decreasing sequence (f i, Si)i∈ω of vertices
of Uβ. Let λ0 be the minimal λ < α such that (f i(λ), Si(λ)) is not constant. Since
(f i, Si)<λ0 is constant, it must be that (f i(λ0), S

i(λ0))i∈ω is non-increasing. Now since
β × V (U⊤λ0

) is well-founded, the above sequence is ultimately constant. Let i0 be the last

index of strict decrease: (f i0(λ0), S
i0(λ0)) > (f i0+1(λ0), S

i0+1(λ0)) = (f i(λ0), S
i(λ0)), for

all i > i0.
We show that f i0(λ0) > f i0+1(λ0 + 1). By the definition of order we have two cases. If

f i0(λ0) > f i0+1(λ0) then the property holds as f i0+1(λ0) ≥ f i0+1(λ0 + 1). The second
case is when f i0(λ0) = f i0+1(λ0) and S

i0(λ0) > Si0+1(λ0). But then S
i0+1(λ0) ̸= ⊤ and

therefore f i0+1(λ0) > f(i0 + 1)(λ0 + 1) by the condition (4.1) on vertices of Uβ. So the
property holds in this case too.

Now, repeating the same argument on the suffix (f i, Si)i>i0 we find λ1 > λ0 and i1 > i0
such that f i0(λ0) > f i0+1(λ0 + 1) ≥ f i1(λ1) > f i1+1(λ1 + 1). Iterating this construction,
we obtain an infinite decreasing sequence of ordinals: a contradiction.

2. Let (f, S), (f ′, S′), (f ′′, S′′) be vertices of Uβ and let cλ ∈ Cλ. We consider only the left

monotonicity, right monotonicity being similar. Assume (f, S)
cλ−→ (f ′, S′) > (f ′′, S′′).

Using (4.2), we have the following chain of non-strict inequalities

(f, S)<λ ≥ (f ′, S′)<λ ≥ (f ′′, S′′)<λ

and conclude that (f, S)
cλ−→ (f ′′, S′′) if any of them is strict. Otherwise, the above are

equalities, so the definition of transitions and order gives us S(λ)
cλ−→ S′(λ) ≥ S′′(λ) in U⊤λ .

By monotonicity of U⊤λ we have S(λ)
cλ−→ S′′(λ) giving us the desired (f, S)

cλ−→ (f ′′, S′′).

3. Consider an infinite path (f0, S0)
c0
λ0−−→ (f1, S1)

c1
λ1−−→ . . . in Uβ where for all i, ci

λi ∈ Cλi .

Let w = c0λ0c
1
λ1 . . . . The aim is to prove that w ∈W . Let λ0 be minimal among the λi’s

and distinguish two cases.
• If λ0 appears infinitely often among the λi’s, then w is λ0-supported, so we must
prove that πλ0(w) ∈ Wλ. Since all λi’s are ≥ λ0, property (4.2) gives (f i, Si)<λ0

≥
(f i+1, Si+1)<λ0

for all i. Therefore, thanks to well-foundedness, (f i, Si)<λ0
is eventually

constant, say starting from index i0. Consider any i ≥ i0. If λi = λ0 we must have

Si(λ0)
ciλ0−−→ Si+1(λ0). Otherwise, λi > λ0, so we have both (f i, Si)<λi ≥ (f i+1, Si+1)<λi

and (f i, Si)<λ0
= (f i+1, Si+1)<λ0

, which implies that Si(λ0) ≥λ0 S
i+1(λ0). Therefore

for i ≥ i0, we have Si(λ0)
ci
λi−−→ Si0+1(λ0) ∈ E(U⊤λ ) if λi = λ, and Si(λ0) ≥ Si+1(λ0)

otherwise. Thanks to monotonicity of transitions in U⊤λ0
we conclude that πλ0(w≥i0)
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labels a path of U⊤λ0
. By universality of U⊤λ0

, this path satisfies Wλ0 . By prefix-
independence πλ0(w) also satisfies Wλ0 .
• Assume now that λ0 appears only finitely often among the λi’s. Let i0 be the maximal
i such that λi = λ0. We show that

either (f0, S0)<λ0
> (f i0+1, Si0+1)<λ0

or

(f0, S0)<λ0
= (f i0+1, Si0+1)<λ0

and f i0(λ0) > f i0+1(λ0 + 1)

Thanks to (4.2), for all i we have (f i, Si)<λ0
≥ (f i+1, Si+1)<λ0

. If (f0, S0)<λ0
>

(f i0+1, Si0+1)<λ0
we are done. Otherwise, we must have (f i0 , Si0)<λ0

= (f i0+1, Si0+1)<λ0

and Si0(λ0)
c
i0

λi0−−→ Si0+1(λ0) ∈ E(U⊤λ0
). Thus Si0+1(λ0) ̸= ⊤λ0 hence f i0(λ0) >

f i0+1(λ0 + 1) by the condition (4.1) on vertices.
In the next step we let λ1 > λ0 be the minimum λi for i > i0, and if it appears only
finitely often, define i1 to be maximal such that λi1 = λ1. Just like above, we obtain:

either (f i0+1, Si0+1)<λ1
> (f i1+1, Si1+1)<λ1

or

(f i0+1, Si0+1)<λ1
= (f i1+1, Si1+1)<λ1

and f i1(λ1) > f i1+1(λ1 + 1)

Observe that if the second case occurs, and we have f i0(λ0) > f i0+1(λ0 + 1) then we
can combine these inequalities to f i0(λ0) > f i0+1(λ0 + 1) ≥ f i0+1(λ1) = f i1(λ1) (here
the second inequality is monotonicity of f as λ1 ≥ λ0 + 1).
To finish we observe that this process cannot continue forever. Indeed, the first case
cannot occur infinitely often due to well-foundedness proved in the first item of the
lemma. If eventually only the second case occurs then this also leads to a contradiction
as we can combine the inequalities we have observed above to obtain an infinite strictly
decreasing chain f i0(λ0) > f i1(λ1) > f i2(λ2) > . . . .

4. Well-foundedness was established in the first item, so we should show that antichains in Uβ

are finite. Consider a non-empty antichain A ⊆ V (Uβ). Towards a contradiction suppose
A is infinite. Let λ0 be the smallest among λ’s such that there is a difference among
elements of A on position λ, namely, there are (f, S), (f ′, S′) ∈ A with S(λ) ̸= S′(λ).
Observe that the smallest difference cannot appear between f and f ′ components, as all
elements of A are incomparable. Consider the set {S(λ0) : (f, S) ∈ A}. It must be an
antichain, because A is an antichain and all elements of A are the same up to λ0. Hence,
this set is finite because all antichains in (Uλ,≥λ) are finite. Since it is an antichain and
has more than one element, ⊤ is not in this set. As we have assumed that A is infinite
there must be (f0, S0) ∈ A for which the set A(f0,S0),λ0

= {(f, S) ∈ A : (f, S)<λ0+1 =
(f0, S0)<λ0+1} is infinite. Observe that S0(λ0) ̸= ⊤.

We can repeat the reasoning starting from A(f0,S0),λ0
instead of A. This gives us

λ1 > λ0 and (f1, S1). Continuing like this we obtain an infinite sequence A(fi,Si),λi
such

that: Si(λi) ̸= ⊤ and (fi, Si)≤λi+1 = (fi+1, Si+1)≤λi+1. This gives us f0(λ0) = f1(λ0) >
f1(λ1) = f2(λ1) > f2(λ2) the strict inequalities following from Si(λj) ̸= ⊤ for i ≥ j. A
contradiction, as the ordinals are well-founded.

Compositionality properties. For every λ < α we can define the graph Uβ
<λ in the same way

as Uβ , but considering the sequence up to λ instead of up to α. We can also define the graph

Uβ
≥λ by considering the subsequence starting from λ. In this second case, it will be convenient
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to assume the vertices of Uβ
≥λ are of the form f : [λ, α)→ β and S : [λ, α)→

⋃
λ≤λ′<α V (U⊤λ′).

The lemma below proves a useful compositionality property; in some sense it states that
our construction extends finite lexicographic products.

Lemma 4.7. For all ordinals β, β′ and for λ < α it holds that Uβ
<λ ⋉ Uβ′

≥λ → Uβ+β′
.

Proof. For v = ((f, S), (f ′, S′)) ∈ V (Uβ
λ ⋉ Uβ′

[λ,α)), we define ϕ(v) = (g,R) by

g(λ′) =

{
β′ + f(λ′) if λ′ < λ

f ′(λ′) otherwise
and R(λ′) =

{
S(λ′) if λ′ < λ

S′(λ′) otherwise.

It is direct to check that (g,R) ∈ V (Uβ+β′
); in particular g is non-increasing since both f

and f ′ are and values of f ′ are < β′. To show that ϕ defines a morphism from Uβ
λ ⋉ Uβ′

[λ,α)

to Uβ+β′
, we pick an edge ((f0, S0), (f

′
0, S
′
0))

cλ′−−→ ((f1, S1), (f
′
1, S
′
1)) with cλ′ ∈ Cλ′ . By the

definition of ⋉ this edge comes from one of the three cases.

• If λ′ < λ, then (f0, S0)
cλ′−−→ (f1, S1) ∈ E(Uβ

λ ), that is,

(f0, S0)<λ′ > (f1, S1)<λ′ or [(f0, S0)<λ′ = (f1, S1)<λ′ and S0(λ
′)

cλ′−−→ S1(λ
′) ∈ E(U⊤λ′)].

We have (g0, R0)<λ′ = (f0 + β′, S0)<λ′ , and likewise (g1, R1)<λ′ = (f1 + β′, S1)<λ′ , so the
result follows.
• If λ′ ≥ λ and (f0, S0) > (f1, S1). Then we have (g0, R0)≤λ > (g1, R1)≤λ which implies

(g0, R0)<λ′ > (g1, R1)<λ′ , thus (g0, R0)
cλ′−−→ (g1, R1).

• Otherwise, λ′ ≥ λ, (f0, S0) = (f1, S1) and (f ′0, S
′
0)

cλ′−−→ (f ′1, S
′
1) ∈ E(Uβ′

[λ,α)), which rewrites
as

(f ′0, S
′
0)<λ′ > (f ′1, S

′
1)<λ′ or [(f ′0, S

′
0)<λ′ = (f ′1, S

′
1)<λ′ and S′0(λ

′)
cλ′−−→ S′1(λ

′) ∈ E(U⊤λ′)].

(In the line above, notation (f ′0, S
′
0)<λ refers to maps [λ, α]→ β′ and [λ, α)→

⋃
λ≤λ′≤α V (U⊤λ′).)

Then since (g0, R0)<λ = (f0 + β′, S0) = (f1 + β′, S1) = (g1, R1)<λ, it follows that

(g0, R0)<λ′ > (g1, R
′
1)<λ′ or [(g0, R0)<λ′ = (g1, R1)<λ′ and R0(λ

′)
cλ′−−→ R1(λ

′) ∈ E(U⊤λ′)],

the wanted result.

4.3.3. Universality. We are now ready to prove our main result.

Theorem 4.8. Suppose (Cλ)λ<α is a sequence of pairwise disjoint sets of colours, and
(Wλ)λ<α is a sequence of prefix-independent objectives with Wλ ⊆ Cω

λ for all λ. Let κ be
some cardinal and assume that for every λ < α there is a κ-universal graph (Uλ,≥λ) for Wλ.
Then there is β such that the power graph (Uβ,≥) is κ-universal for the min-lexicographic
product of (Wλ)λ<α.

We say that a C-graph G can be mapped if for some ordinal β it holds that G→ Uβ;
otherwise we say that G cannot be mapped. Since Uβ satisfies W (Lemma 4.6), any graph
that can be mapped satisfies W . Our goal is to prove the converse: graphs of size < κ that
satisfy W can be mapped. This implies Theorem 4.8, by taking β large enough so that any
graph smaller than κ satisfying W can be mapped into Uβ.

Our first step is to show that if every graph in a sequence can be mapped then the
directed sum of the sequence can be mapped.
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Lemma 4.9. Let (Gµ)µ<M be a family of graphs such that for all µ < M , Gµ can be mapped.

Then
←−∑

µ<MGµ can be mapped.

Proof. For each µ < M , let βµ be such that Gµ → Uβµ . Let φµ(v) = (fvµ , S
v
µ) be a morphism

φµ : Gµ → Uβµ . Recall that fvµ : α → βµ and Sv
µ : α →

⋃
λ<α V (U⊤λ ). Let G =

←−∑
µ<MGµ

and let β =
∑

µ<M βµ. We define a map ψ : V (G)→ V (Uβ) by

φ(v) = (fvµ +
∑
µ′<µ

β′µ, S
v
µ), if v ∈ V (Gµ) and φµ(v) = (fvµ , S

v
µ)

It is direct to check that φ(v) is an element of V (Uβ). In particular for the condition (4.1)
we check that if Sv

µ(λ) ̸= ⊤ then (fvµ +
∑

µ′<µ β
′
µ)(λ) > (fvµ +

∑
µ′<µ β

′
µ)(λ+1). This follows

directly from the fact that fvµ satisfies this condition.

To show that φ defines a morphism G → Uβ, we take an edge v
cλ−→ v′ ∈ E(G) with

c ∈ Cλ; by definition of G =
←−∑

µ<MGµ there are two cases.

• The first case is when v
cλ−→ v′ ∈ E(Gµ) for some µ < M . Since ϕµ is a morphism

Gµ → Uβµ , we have ϕµ(v)
cλ−→ ϕµ(v

′), which rewrites as

(fvµ , S
v
µ)<λ > (fv

′
µ , S

v′
µ )<λ, or

(fvµ , S
v
µ)<λ = (fv

′
µ , S

v′
µ )<λ, and [Sv

µ]λ
cλ−→ [Sv′

µ ]λ ∈ E(U⊤λ ).

Since fv and fv
′
are obtained by shifting respectively fvµ and fv

′
µ by

∑
µ′<µ βµ′ , and

Sv = Sv
µ and Sv′ = Sv′

µ , we get that (fv, Sv)
cλ−→ (fv

′
, Sv′), as required.

• Otherwise, v ∈ V (Gµ) and v
′ ∈ V (Gµ′) for µ > µ′. Then

fv(0) = fvµ(0) +
∑
µ′′<µ

βµ′′ > fv
′

µ′ (0) +
∑

µ′′<µ′

βµ′′ = fv
′
(0),

where the inequality holds since βµ′ > fv
′

µ′ (0). Therefore, (fv, Sv)
cλ−→ (fv

′
, Sv′).

We now prove that any C≥λ-graph that can be mapped into Uβ can be also mapped

into Uβ′

≥λ, for some bigger β′.

Lemma 4.10. Let λ < α and let G be a C≥λ-graph which can be mapped. Then there is an

ordinal β′ such that G→ Uβ′

≥λ.

Proof. Let ϕ : G→ Uβ. For each (f ′, S′) ∈ V (Uβ
<λ), we let G(f ′,S′) be the restriction of G

to vertices in

ϕ−1{(f, S) ∈ V (Uβ) | (f, S)<λ = (f ′, S′)}.
(It may be that some of the (G(f ′,S′)) are empty; this is not an issue in the proof below.)
We now make two claims which are proved below.

Claim 4.11. For each (f ′, S′), it holds that G(f ′,S′) → Uβ
≥λ.

Claim 4.12. It holds that G →
←∑

(f ′,S′)G(f ′,S′), where the (f ′, S′)’s are ordered as in

V (Uβ
<λ).
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Putting the two claims together with Lemma 4.9 yields the desired result. For Claim 4.11,
it suffices to consider the restriction of ϕ to G(f ′,S′) (restrictions of morphisms are morphisms).

For Claim 4.12, is suffices to recall property (4.2) saying that for every edge (f0, S0)
c−→

(f1, S1) ∈ E(Uβ) such that c ∈ C≥λ, we have (f0, S0)<λ ≥ (f1, S1)<λ.

We now prove a crucial ingredient to the proof of Theorem 4.8. Recall that G[v] is the
restriction of G to vertices reachable from v.

Lemma 4.13. If G satisfies W and cannot be mapped then there is v ∈ V (G) such that
G[v] cannot be mapped. Moreover, v can be picked so that it has a predecessor in G.

Proof of Lemma 4.13. Assume for contradiction that for all v ∈ V [G], G[v] can be mapped.
Take a well-ordering (vµ)µ<M of all vertices of G, and define Gµ to be

Gµ = G[vµ]−
⋃
µ′<µ

V (G[vµ′ ]).

Then for each µ < M , it holds that Gµ → G[vµ] therefore Gµ can be mapped. Hence, by

Lemma 4.9,
←−∑

µ<MGµ can be mapped. But G→
←−∑

µ<MGµ, so G can also be mapped: a
contradiction proving that there is v ∈ V (G) such that G[v] cannot be mapped.

We now show that v can be taken to have a predecessor, so assume that the v constructed
above does not have a predecessor (in particular, there is no loop around v). We show that
for some successor v′ of v, G[v′] cannot be mapped. Observe that if v is reachable from some
of its successors v′ then G[v] = G[v′]. So we can take v′ in this case. Otherwise, we adapt
the argument from the previous paragraph. Assume that for all successors v′ of v, G[v′] can
be mapped, well-order them into (v′µ)µ<M ′ , and let

G′µ = G[v′µ]−
⋃
µ′<µ

V (G[v′µ′ ]).

Then the G′µ’s can be mapped. Let GM ′ be the restriction of G to {v}. Since v is not
reachable from any of its successors, there is no loop around v. So GM ′ is edgeless, and
therefore it can be mapped. Now observe that

G[v]→
←−∑

µ<M ′G′µ
←
+GM ′ ,

which can be mapped thanks to Lemma 4.9. A contradiction showing that this case is
impossible.

We are now ready to present an inductive proof of Theorem 4.8.

Proof of Theorem 4.8. The proof goes by induction over the ordinal α therefore we assume
the result known for ordinals < α:

For any λ < α and for any C<λ-graph G satisfying W , there is β such that G→ Uβ
<λ.

Let G be a C-graph satisfying W and assume towards contradiction that G cannot be
mapped.

Claim 4.14. For any λ < α, the restriction G≥λ of G to edges with colours in C≥λ cannot
be mapped.
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Proof. Suppose for a contradiction that there is λ such that G≥λ can be mapped. We
construct a C<λ-graph G

′ that can be mapped and use G′ ⋉G≥λ to show that G can be
mapped.

The C<λ-graph G
′ has the same vertices as G, V (G′) = V (G). The edges have colours

c ∈ C<λ, and are given by:

v
c−→ v′ ∈ E(G′) when ∃u, u′ ∈ V (G), v

C∗
≥λ
⇝ u

c−→ u′
C∗

≥λ
⇝ v in G,

where the notation v
C∗

≥λ
⇝ u means that there is a path in G from v to u using only edges

with colours in C≥λ (stated differently, a path in G≥λ). Note that these paths may be empty,
and in particular, edges of G with colour in C<λ also belong to G′.

Let us prove that G′ satisfies W . Consider an infinite path π′ = v0
c0−→ v1

c1−→ . . . in G′;
it is labelled by the word w = c0c1 · · · ∈ Cω

<λ. Then there is a path of the form

π = v0 ⇝ u0
c0−→ u′0 ⇝ v1 ⇝ u1

c1−→ u′1 ⇝ . . . ,

in G, where paths vi ⇝ ui and u
′
i

v
⇝i+1 vi+1 are labelled by colours in C≥λ. Since G satisfies

W , the label w of π belongs to W , in particular it is λ′-supported for some λ′, and since w
has infinitely-many occurrences of letters from C<λ, it must be that λ′ < λ. Thus w′ is also
λ′-supported and πλ′(w′) = πλ′(w) ∈Wλ′ and thus w′ ∈W . Therefore, G′ satisfies W hence

we obtain by induction that G′ → Uβ′

<λ for some β′.

Since G′ → Uβ′

<λ we can find a minimal morphism ϕ′ : G′ → Uβ′

<λ. This means, it is a

morphism not pointwise bigger than any other morphism G′ → Uβ′

<λ. Such a morphism has
a property that for any pair (v, v′) of vertices, if for all colour c, all c-successors of v′ are
also c-successors of v, then ϕ′(v) ≥ ϕ′(v′) (otherwise we could obtain a smaller morphism by
mapping v′ to ϕ(v)).

We now show that G→ Uβ′

<λ ⋉G≥λ. Consider the map ϕ between these graphs given

by ϕ(v) = (ϕ′(v), v), which we show to be a morphism. Take an edge v
c−→ v′ ∈ E(G).

• If c ∈ C<λ then v
c−→ v′ ∈ E(G′) thus ϕ′(v)

c−→ ϕ′(v′) ∈ E(Uβ′

<λ) which implies the result.
• Otherwise, c ∈ C≥λ. Then in G′, out(v) ⊇ out(v′). By the above-mentioned property
of minimal morphisms, this implies that ϕ′(v) ≥ ϕ′(v′). Together with the fact that

v
c−→ v′ ∈ E(G≥λ), this implies that v

c−→ v′ ∈ E(G′ ⋉G≥λ), as required.

Thus G→ Uβ′

<λ⋉G
≥λ. Now if G≥λ could be mapped, then by Lemma 4.10 we get G→ Uβ

≥λ,
therefore it follows from Lemma 4.7 that G can be mapped, a contradition.

Let G0 = G and let v0 be such that G0[v0] cannot be mapped, obtained from Lemma 4.13
(here, the fact that v0 has a predecessor in G0 is not used). We will construct a decreasing
sequence of subgraphs G0, G1, . . . of G and vertices v0, v1, . . . with non-empty paths πi from
vi to vi+1 in Gi, with the property that for all i, all edges in Gi+1 (and therefore also in
subsequent graphs) have colours in C>λi , where λi is the maximal colour of an edge in
π<i = π0 . . . πi−1. This implies the desired contradiction as the label of π is not supported,
and thus does not satisfy W . The crucial invariant in the construction is that the Gi[vi]’s
cannot be mapped.

Assume constructed the path up to vi (see also Figure 3), and let λi be as above (or
λi = 0 if i = 0). Since Gi[vi] cannot be mapped, Claim 4.14 says that Gi[vi]

≥λi+1 cannot
be mapped. So we let Gi+1 = Gi[vi]

≥λi+1, and then apply Lemma 4.13 to Gi+1 to obtain
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Figure 3: Constructing a path violating W .

vi+1 ∈ V (Gi+1) such that Gi+1[vi+1] cannot be mapped and vi+1 has a predecessor ui+1 in
Gi+1. Since Gi+1 is a subgraph of Gi[vi], there is a path πi in Gi from vi to vi+1, which we
can take to go through ui. This ensures the path is non-empty.

Our main result, Theorem 4.3, follows from Theorem 4.8 and Lemma 4.6.

5. Conclusions

In this work, we have introduced two positionality-preserving operations of objectives
generalising lexicographic products to arbitrary ordinals: max- and min-lexicographic
products. These two operations extend our understanding of positionality in two orthogonal
manners.

Max-lexicographic products yield a natural generalisation of the Parity languages,
providing a family of positional languages that are complete for infinite levels of the difference
hierarchy over Σ0

2 (Theorem 3.6). This sets a first stone in the systematic study of positional
objectives within ∆0

3, the natural topological generalisation of ω-regular objectives.
Min-lexicographic products, on the other hand, easily go beyond ∆0

3. They provide a
tool to show positionality of objectives in Σ0

3 (as, for instance, ω-Büchi), the higher level
in the Borel hierarchy in which positional objectives have been found.14 An interesting
question is whether there are positional objectives in all the levels of the Borel hierarchy.

Furthermore, we have proved a special case of Kopczyński’s conjecture, namely, closure of
positionality under colour-increasing unions of objectives (Theorem 3.2). The lexicographic
product of a family of objectives provides a sort of underapproximation to their union.
Whether the positionality of lexicographic products can help to resolve the general case of
Kopczyński’s conjecture is an exciting open problem.
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Pierre Ohlmann, Mickael Randour, Ocan Sankur, Sylvain Schmitz, Olivier Serre, Mateusz Skomra,
Nathalie Sznajder, and Pierre Vandenhove. Games on Graphs. Cambridge University Press, 2025.
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Appendix A. Signatures for parity games with infinitely many priorities

Recall the Max-parity objective

MaxParityα = {w ∈ αω | lim supw is odd},

which is the max-lexicographic product of the objectives

Wλ =

{
TLλ if λ is even,

TWλ otherwise.
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Fix a cardinal κ. Let U<α be given by V (U<α) = καeven (with ordinal exponentiation),15

where αeven denotes the set of even ordinals < α, and

E(U<α) = {v
λ−→ v′ | [λ even and v≥λ > v′≥λ] or [λ odd, v≥λ+1 > 0 and v≥λ+1 ≥ v′≥λ+1]}.

It is a direct check that Uα is well-ordered and monotone, when ordered lexicographically.
This appendix is devoted to the proof of the following theorem.

Theorem A.1. The graph U<α

←α
⊗ κ is κ-universal for MaxParityα.

Proof. We proceed by induction over α, call P (α) the assertion “U<α is almost (κ,MaxParityα)-
universal.” From there, Lemma 2.1 concludes.

Zero case. The graph U0 has a single vertex with no edge; therefore it satisfies MaxParity0 =
∅. Now, the only graphs satisfying MaxParity0 are graphs with no infinite paths, and such
graphs have sinks; in other words, in any graph G satisfying MaxParity0, there is a vertex v
such that G[v] 7→ U0.

Even successor case. Assume α is even and P (α) holds. We aim to prove P (α+ 1). Let

Uα = •
←α
⊗ κ, so that Uα is (κ,Wα)-universal. Let us prove that

U<α+1 = U<α ⋊ Uα.

Since α is even, it is an easy check that the two vertex sets coincide with καeven+1. Now

v
λ−→ v′ ∈ E(U<α+1) if and only if vα > v′α or [vα = v′α and v<α

λ−→ v′<α] if and only if

v
λ−→ v′ ∈ E(U<α ⋊ Uα). Now MaxParityα+1 = MaxParityα ⋊Wα, therefore we conclude by

Theorem 2.3.

Odd successor case. Assume α is odd and P (α) holds. We aim to prove P (α + 1).

Let Uα = •
α

so that Uα is (κ,Wα)-universal. Let U ′<α+1 = U<α ⋊ Uα; again thanks to
Theorem 2.3 we know that U ′<α+1 is κ-almost universal for MaxParityα+1. Now observe

that V (U ′<α+1) = V (U<α) = καeven = κ(α+1)even = V (Uα+1), and

E(U ′α) = {v
λ−→ v′ | [λ even and v≥λ > v′≥λ] or [λ odd and v≥λ+1 ≥ v′≥λ+1]}.

Therefore the identity over καeven defines a morphism U<α+1 → U ′<α+1 and in particular,
U<α+1 satisfies MaxParityα. Conversely, the map assigning v′ to v where v′α = vα + 1 and
v′λ = vλ for λ < α defines a morphism U ′<α+1 → U<α+1, which concludes.

Limit case. Assume α is a limit and P (λ) holds for all λ < α; we aim to prove P (α). We

first prove that U<α satisfies MaxParityα. Take an infinite path v0
λ0−→ v1

λ1−→ . . . in U<α,
and assume towards a contradiction that λ = lim sup(λ0λ1 . . . ) is even. There are two cases.

• If λ < α. Let i0 be large enough so that all λi’s are ≤ λ for i ≥ i0. Then for i ≥ i0 we
have vi>λ ≥ v

i+1
>λ , so by well-foundedness there is i1 so that vi>λ is the same for all i ≥ i1.

Then for i ≥ i1 we have vi≤λ
λi−→ vi+1

≤λ therefore vi1≤λ
λi1−−→ vi1+1

≤λ
λi1+1−−−→ . . . defines a path in

U<λ+1. But by induction, U<λ+1 satisfies MaxParityλ+1 ⊆ MaxParityα, so we conclude
thanks to prefix-independence.

15Stated differently, v ∈ V (U<α) is given by (vλ)λ≤α,λ even such that vλ < κ and finitely many of the vλ’s
are nonzero.
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• If λ = α. Let µ be the maximal element of the support of v0; in particular, v0≥µ+2 = 0.

By induction we get that for all i, vi≥µ+2 = 0 and λi < µ+ 2. But then λ = lim supi λi <
µ+ 2 < α, a contradiction.

We now let G be a graph < κ satisfying MaxParityα and aim to prove that there is v ∈ V (G)
such that G[v] → U<α. Note that for any λ < α, we have U<λ → U<α and therefore it
suffices to find v ∈ V (G) such that all priorities in G[v] are < λ. Assume that there is no
such v: for any v and any λ < α there is a path in G towards an edge with priority > λ.
Then (just as in the proof of Theorem 3.2) we construct a path whose lim sup is α which is
a limit (and therefore even), violating the fact that G satisfies MaxParityα.
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