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Abstract
In the context of 2-player zero-sum infinite duration games played on (potentially infinite) graphs,
we ask the following question: Given an objective W in BC(Σ0

2), i.e. recognised by a potentially
infinite deterministic parity automaton, what is its memory, meaning the smallest integer k such
that in any game won by Eve, she has a strategy with ≤ k states of memory. We provide a class of
deterministic parity automata that exactly recognise objectives with memory ≤ k. This leads to the
following results:

for ω-regular objectives, the memory can be computed in NP;
given two objectives W1 and W2 in BC(Σ0

2) and assuming W1 is prefix-independent, the memory
of W1 ∪ W2 is at most the product of the memories of W1 and W2.

Our results also apply to chromatic memory, the variant where strategies can update their memory
state only depending on which colour is seen.
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1 Introduction

Context: Strategy complexity in infinite duration games
We study infinite duration games on graphs in which two players, called Eve and Adam,
interact by moving a token along the edges of a (potentially infinite) edge-coloured directed
graph. Each vertex belongs to one player, who chooses where to move next during a play.
This interaction goes on for an infinite duration, producing an infinite path in the graph. The
winner is determined according to a language of infinite sequences of colours W , called the
objective of the game; Eve aims to produce a path coloured by a sequence in W , while Adam
tries to prevent this. This model is widespread for its use in verification and synthesis [12].

In order to achieve their goal, players use strategies, which are representations of the
course of all possible plays together with instructions on how to act in each scenario. In this
work, we are interested in optimal strategies for Eve, that is, strategies that guarantee a
victory whenever this is possible. More precisely, we are interested in the complexity of such
strategies, or in other words, in the succinctness of the representation of the space of plays.

Positionality. The simplest strategies are those that assign in advance an outgoing edge
to each vertex owned by Eve, and always play along this edge, disregarding all the other
features of the play. All the information required to implement such a strategy appears in
the game graph itself. Objectives for which such strategies are sufficient to play optimally
are called positional (or memoryless). Understanding positionality has been the object of a
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long line of research. The landmark results of Gimbert and Zielonka [18] and Colcombet and
Niwinski [14] gave a good understanding of which objectives are bi-positional, i.e. positional
for both players.

More recently, Ohlmann proposed to use universal graphs as a tool for studying po-
sitionality (taking Eve’s point of view) [23]. This led to many advances in the study of
positionality [2, 24], and most notably, a characterisation of positional ω-regular objectives
by Casares and Ohlmann [8], together with a polynomial time decision procedure (and some
other important corollaries, more discussion below).

Strategies with memory. However, in many scenarios, playing optimally requires dis-
tinguishing different plays that end in the same vertex. A seminal result of Büchi and
Landweber [6] states that in finite games where the objective is an ω-regular language, the
winner has a winning strategy that can be implemented by a finite automaton processing
the edges of the game; this result was later extended to infinite game graphs by Gurevich
and Harrington [19]. Here, the states of the automaton are interpreted as memory states of
the strategy, and a natural measure of the complexity of a strategy is the number of such
states. More precisely, the memory of an objective W is the minimal k such that whenever
Eve wins a game with objective W , she has a winning strategy with k states of memory. For
ω-regular objectives, this is always finite [6, 19], while the case of positionality discussed
above corresponds to memory k = 1.

Chromatic versus general memory. In the special case where these automata are only
allowed to read the colours on the edges of the game graph, we speak of chromatic memory.
In his PhD thesis, Kopczyński showed that, for prefix-independent ω-regular objectives and
over finite game graphs, the chromatic memory can be computed in exponential time [20,
Theorem 8.14]. Recently, it was shown that computing the chromatic memory of some
restricted subclasses of ω-regular objectives is in fact NP-complete: for Muller objectives [7]
and for topologically open or closed objectives [3].

For the more natural model of not-necessarily chromatic memory (which we will simply
call memory1), results are sparser. Notable ones include the characterisation for memory
of Muller objectives by Dziembowski, Jurdziński, and Walukiewicz [15], or the memory of
closed objectives [13]. However, these are all rather restricted classes of ω-regular objectives.
Prior to this work, even computing the memory of open ω-regular objectives (sometimes
called regular reachability objectives) was not known to be decidable.

Unions of objectives. The driving question in Kopczyński’s PhD thesis [20] is whether
prefix-independent positional objectives are closed under union, which has become known
as Kopczyński’s conjecture. Recently, Kozachinskiy [21] disproved this conjecture, but only
for positionality over finite game graphs, and using non-ω-regular objectives. In fact, the
conjecture is now known to hold for ω-regular objectives [8] and Σ0

2 objectives [24]. Casares
and Ohlmann proposed a generalisation of this conjecture from positional objectives to
objectives requiring memory [10, Conjecture 7.1] (see also [20, Proposition 8.11]):

▶ Conjecture 1 (Generalised Kopczyński’s conjecture). Let W1, W2 ⊆ Σω be two prefix-
independent objectives with memory k1 and k2, respectively. Then W1 ∪W2 has memory at
most k1 · k2.

1 In the literature, this is sometimes called general memory, or chaotic memory.
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Using the characterisation of [15], it is not hard to verify that the conjecture holds for
Muller objectives.

BC(Σ0
2) languages. The results in this work apply not only to ω-regular languages, but to

the broader class of BC(Σ0
2) languages. These are boolean combinations of languages in Σ0

2
(countable unions of closed languages), or equivalently, recognised by deterministic parity
automata with infinitely many states. This class includes typical non-ω-regular examples such
as energy or mean-payoff objectives, but also broader classes such as unambiguous ω-petri
nets [16] and deterministic ω-Turing machines (Turing machines with a Muller condition).

Contributions
Our main contribution is a characterisation of BC(Σ0

2) objectives with memory ≤ k, stated
in Theorem 7. It captures both the memory and the chromatic memory of objectives over
infinite game graphs. The characterisation is based on the notion of k-wise ε-completable
automata, which are parity automata with states partitioned in k chains, where each chain
is endowed with a tight hierarchical structure encoded in the ε-transitions of the automaton.

From this characterisation, we derive the following corollaries:
1. Decidability in NP. Given a deterministic parity automaton A, the memory (resp.

chromatic memory) of L(A) can be computed in NP.
2. Generalised Kopczyński’s conjecture. We establish (and strengthen) Conjecture 1 in the

case of BC(Σ0
2) objectives: if W1 and W2 are BC(Σ0

2) objectives with memory k1 and k2,
and one of them is prefix-increasing, then the memory of W1 ∪W2 is ≤ k1 · k2.

Main technical tools: Universal graphs and ε-completable automata. As mentioned
above, Ohlmann proposed a characterisation of positionality by means of universal graphs [23].
In 2023, Casares and Ohlmann extended this characterisation to objectives with memory
≤ k by considering partially ordered universal graphs [10]. Until now, universal graphs have
been mainly used to show that certain objectives have memory ≤ k (usually for k = 1); this
is done by constructing a universal graph for the objective. One technical novelty of this
work is to exploit both directions of the characterisation, as we also rely on the existence of
universal graphs to obtain decidability results.

Our characterisation is based on the notion of k-wise ε-completable automata, which
extends the key notion of [8] from positionality to finite memory.

Comparison with [8]. In 2024, Casares and Ohlmann characterised positional ω-regular
objectives [8], establishing decidability of positionality in polynomial time, and settling
Kopczyński’s conjecture for ω-regular objectives. Although the current paper generalises the
notions and some of the results from [8] to the case of memory, as well as potentially infinite
automata, the proof techniques are significantly different: while [8] is based on intricate
successive transformations of parity automata, ours is based on an extraction method in the
infinite and manipulates ordinal numbers. Though somewhat less elementary, our proof is
notably shorter, and probably easier to read.

When instantiated to the case of memory 1, we thus extend Kopczyński’s conjecture
from ω-regular objectives to positional BC(Σ0

2) objectives. This also gives an easier proof of
decidability of positionality in polynomial time2 for ω-regular objectives. However, some of

2 It is explained in [8, Theorem 5.3] how decidability of positionality in polynomial time can be derived,
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the results of [8] are not recovered with our methods: the finite-to-infinite and 1-to-2-player
lifts, as well as closure of positionality under addition of neutral letters.

2 Preliminaries

We let Σ be a countable alphabet3 and ε /∈ Σ be a fresh symbol that should be interpreted
as a neutral letter. Given a word w ∈ (Σ ∪ {ε})ω we write πΣ(w) for the (finite or infinite)
word obtained by removing all ε’s from w; we call it its projection on Σ. An objective is a
set W ⊆ Σω. Given an objective W ⊆ Σω, we let W ε denote π−1

Σ (W ) ⊆ (Σ ∪ {ε})ω.

2.1 Graphs, games and memory

We introduce notions pertaining to games and strategy complexity, as they will be central
in the statement of our results. Nevertheless, we note that all our technical proofs will use
these definitions through Theorem 5 below, and will not explicitly use games.

Graphs. A Σ-graph G is given by a set of vertices V (G) and a set of coloured, directed
edges E(G) ⊆ V (G)×Σ×V (G). We write v

c−→ v′ for edges (v, c, v′). A path is a sequence of
edges with matching endpoints (v0

c0−→ v1)(v1
c0−→ v2) . . . which we write as v0

c0−→ v1
c1−→ . . . .

Paths can be empty, finite, or infinite, and have a label c0c1 . . . . Throughout the paper,
graphs are implicitly assumed to be without dead-end: every vertex has an outgoing edge.

We say that a vertex v in a Σ-graph (resp. a (Σ ∪ {ε})-graph) satisfies an objective
W ⊆ Σω if the label of any infinite path from v belongs to W (resp. to W ε). A pointed
graph is a graph with an identified initial vertex. A pointed graph satisfies an objective
W ⊆ Σω if the initial vertex satisfies W ; a non-pointed graph satisfies an objective if all its
vertices do. An infinite tree is a sinkless pointed graph whose initial vertex is called the root,
and with the property that every vertex admits a unique path from the root.

A morphism from a Σ-graph G to a Σ-graph H is a map ϕ : V (G)→ V (H) such that for
any edge v

c−→ v′ in G, it holds that ϕ(v) c−→ ϕ(v′) is an edge in H. Morphisms between pointed
graphs should moreover send the initial vertex of G to the initial vertex of H. Morphisms
need not be injective. We write G −→ H when there exists a morphism ϕ : G→ H.

Games and strategies. A game is given by a pointed (Σ ∪ {ε})-graph G together with an
objective W ⊆ Σω, and a partition of the vertex set V (G) = VEve ⊔ VAdam into the vertices
controlled by Eve and those controlled by Adam. A strategy4 (for Eve) is a pointed graph
together with a morphism π towards G, satisfying that for every edge v

c−→ v′ in the game,
where v ∈ VAdam, and for all u ∈ π−1(v), there is an edge u

c−→ u′ such that u′ ∈ π−1(v). A
strategy is winning if it satisfies the objective W of the game. We say that Eve wins if there
exists a winning strategy.

with reasonable efforts, from Kopczyński’s conjecture.
3 We restrict our study to countable alphabets, as if Σ is uncountable, the topological space Σω is not

Polish and the class BC(Σ0
2) is not as well-behaved.

4 We follow the terminology from [10]. The classical notion of a strategy as a function f : E(G)∗ → V (G)
can be recovered by considering the graph with vertices E(G)∗, and edges ρ

e−→ ρe.
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Memory. A finite-memory strategy5 is a strategy with vertices V (G) × {1, . . . , k} and
projection π(v, m) = v, with the additional requirement that for every edge (v, m) ε−→ (v′, m′),
it holds that m = m′. We say that k is the memory of the strategy, and numbers 1, . . . , k

are called memory states. Informally, the requirement above says that when reading an
ε-transition in the game, we are not allowed to change the memory state; this is called
ε-memory in [10] (to which we refer for more discussion), but since it is the main kind of
memory in this paper, we will simply call it the memory.

A finite-memory strategy is called chromatic if there is a map χ : {1, . . . , k}× (Σ∪{ε})→
{1, . . . , k} such that for every edge (v, m) c−→ (v′, m′) in the strategy, it holds that m′ = χ(m, c).
We say that χ is the chromatic update. Note that necessarily, we have χ(m, ε) = m for every
memory state m.

The (chromatic) memory of an objective W is the minimal k such that for every game
with objective W , if Eve has a winning strategy, she has a winning (chromatic) strategy with
memory ≤ k.

2.2 Automata
We write [d] for the set {0, . . . , d}. A parity automaton A (or just automaton in the following)
with index d – an even number – and alphabet Σ, is a pointed ((Σ ∪{ε})×[d])-graph. Vertices
are called states, edges are called transitions and written q

c:y−−→ q′, where c ∈ Σ ∪{ε} and
y ∈ [d]. Elements in [d] are called priorities. Generally, we use the convention that even
priorities are denoted with letter x, whereas y can be used to denote any priority. Transitions
of the form q

ε:y−−→ q′ are called ε-transitions; note that they also carry priorities.
Infinite paths from the initial state q0 are called runs. A run is accepting if the projection

of its label on the second coordinate belongs to

Parityd = {y0y1 · · · ∈ [d]ω | lim inf(y) is even}. (Note the use of min-parity.)

The language L(A) of A is πΣ(L′), where L′ ⊆ (Σ ∪{ε})ω is the set of projections on the
first coordinate of runs which are accepting. We require that all these projections are infinite
words; stated differently, there is no accepting run from q0 labelled by a word in (Σ ∪{ε})∗εω.
An automaton is deterministic if there are no ε-transitions and for any state q ∈ V (A) and
any letter a ∈ Σ there is at most one transition q

a:_−−→ _. We say that an automaton is
determinisable by pruning if one can make it deterministic by removing some transitions,
without modifying its language. A language belongs to BC(Σ0

2) if it is the language of a
deterministic automaton, and it is ω-regular if the automaton is moreover finite.

We will often identify pointed graphs with automata of index 0, by labelling all transitions
with priority 0. Note that in this case, all runs are accepting. This requires making sure
that there is no accepting run labelled by a word from Σ∗εω, which, up to assuming that all
vertices are accessible from the initial one, amounts to saying that there is no infinite path of
ε−→. We say that such a graph is well-founded.

Blowups and k-automata. A k-blowup B of an automaton A is any automaton with
V (B) ⊆ V (A) × {1, . . . , k}, with initial state in {q0} × {1, . . . , k} and such that for each
transition q

a:y−−→ q′ in A and each m ∈ {1, . . . , k}, there is a transition (q, m) a:y−−→ (q′, _). We
also allow for extra transitions in B. Note that in this case L(A) ⊆ L(B).

5 It is common to define a memory structure as an automaton reading the edges of a game graph. This
notion can be recovered by taking {1, . . . , k} as the states of the automaton.
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A k-automaton is just an automaton whose states are a subset of Q × {1, . . . , k}, for
some set Q; for instance, k-blowups are k-automata. Equivalently, these are automata with
a partition of their states in k subsets. For a state (q, m) in a k-automaton, m is called its
memory state. A k-automaton is called chromatic if there is a map χ : {1, . . . , k}×(Σ∪{ε})→
{1, . . . , k} such that for all transition (q, m) a:y−−→ (q′, m′) it holds that m′ = χ(q, m).

Cascade products. Let A be an automaton with alphabet Σ and index d, and let S be a
[d]-graph. We define their cascade product A⋉ S to be the (Σ ∪{ε})-graph with vertices
V (A)× V (S) and edges

(q, s) c−→ (q′, s′) ⇐⇒ ∃y, [q c:y−−→ q′ and s
y−→ s′].

If S is a pointed graph with intial vertex s0, then A⋉S is pointed with initial vertex (q0, s0).
It is easy to check that we then have the following lemma.

▶ Lemma 2. Let A be an automaton with index [d] and S be a [d]-graph satisfying Parityd.
Then A⋉ S is well-founded and satisfies L(A).

2.3 ε-completability and universal graphs

We now introduce and discuss the key notion used in our main characterisation, which adapts
the notion from [8] from positionality to finite memory.

k-wise ε-completability. A k-automaton A with index d is called k-wise ε-complete if for
each even x ∈ [d], for each memory state m and each ordered pair of states (q, m), (q′, m):

either (q, m) ε:x−−→ (q′, m) or (q′, m) ε:x+1−−−−→ (q, m).

Intuitively, having an edge (q, m) ε:x−−→ (q′, m) means that “(q, m) is much better than
(q′, m)”, as one may freely go from (q, m) to (q′, m) and even see a good priority on the way.
Similarly, (q′, m) ε:x+1−−−−→ (q, m) means that “(q′, m) is not much worse than (q, m)”.

It is also useful for the intuition to apply the definition to both ordered pairs ((q, m), (q′, m))
and ((q′, m), (q, m)). Since automata exclude accepting runs which are ultimately comprised
of ε-transitions, we cannot have (q, m) ε:x←→ (q′, m), and therefore ε-completability rewrites
as: for each x, each memory state m and each unordered pair (q, m), (q′, m) of states,

either (q, m) ε:x−−−−→
ε:x+1

(q′, m) or (q, m) ε:x+1←−−→ (q′, m).

Hence an alternative, maybe more useful view (this is the point of view adopted in [8]) is
that, up to applying some adequate closure properties, a k-wise ε-complete automaton is
endowed with the following structure: for each even priority x and each memory state m,
the states with memory state m are totally preordered by the relation x+1−−→, and the relation
x−→ is the strict version of this preorder. Moreover, for x′ > x, the x′-preorder is a refinement
of the x-preorder.

A k-automaton A is called k-wise ε-completable if one may add ε-transitions to it so as
to turn it into a k-wise ε-complete automaton Aε satisfying L(Aε) = L(A). We simply say
“ε-complete” (resp. “ε-completable”) as a shorthand for “1-wise ε-complete” (resp. “1-wise”
ε-completable).
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▶ Example 3. Let Σ = {a, b, c} and

W = No(b) ∨ Fin(aa) ∨ Inf(cc).

We show a 2-wise ε-complete automaton recognising W in Figure 1. By Theorem 7, the
memory of W is ≤ 2 (and it is easy to see that this bound is tight).

q0 q1 q2

p

a, c : 0

b : 1

a : 2

b : 2

c : 2

a : 1

b : 2

c : 2

a : 2 b : 2

c : 0

ε : 0, 1, 2
ε : 1, 2

ε : 1

Figure 1 A 2-automaton recognising W = No(b) ∨ Fin(aa) ∨ Inf(cc), where p is assumed to have
a different memory state than q0, q1 and q2. It is 2-wise ε-completable by adding the indicated
ε-transitions. A completion also contains the transitions q2

ε:0,1,2−−−−→ q0, omitted for ease of reading.
However, it is not chromatic since reading c may or may not switch the memory state.

The following theorem, a key result in [10] where it is called the structuration lemma, will
also be crucial to this work. Recall that we see well-founded pointed graphs as automata with
only 0-transitions, and we apply the terms k-blowup and ε-completable to them accordingly.

▶ Theorem 4 (Adapted from Lemma 3.4 in [10]). Let G be a well-founded pointed graph
satisfying an objective W which is assumed to have (chromatic) memory ≤ k over games
of size ≤ 2|G|. There is a (chromatic) k-blowup G′ of G which is well-founded, k-wise
ε-complete, and satisfies W .

For completeness, we give a proof of Theorem 4 in Appendix A.

Universal graphs. Given an objective W and a cardinal κ, we say that a graph U is
(κ, W )-universal if for any infinite tree T of cardinality |V (T )| < κ satisfying W , there is a
morphism ϕ : T → U such that ϕ(t0) satifies W in U , where t0 is the root of T . We may
now rephrase the main theorem of [10] in terms of ε-complete universal graphs.

▶ Theorem 5 (Theorem 3.1 in [10]). Let W be an objective. Then W has (chromatic)
memory ≤ k if and only if for every cardinal κ there exists a (κ, W )-universal graph which is
(chromatic and) k-wise ε-complete.

We now give an explicit definition of a (κ, Parityd)-universal graph Sκ
d which is ε-complete.

These ideas date back to the works of Streett and Emerson, who coined the name signa-
tures [26], and were made more explicit by Walukiewicz [28]. Vertices are tuples of ordinals
< κ, indexed by odd priorities in d and ordered lexicographically (with the smaller indices
being the most significant). For a tuple s and index y, we let s<y be the tuple obtained from
s by restricting to coordinates with index < y. Edges are given by

s
y−→ s ⇐⇒

{
s<y ≥ s′

<y and y is even; or
s≤y > s′

≤y and y is odd,
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and ε-edges are given by s
ε−→ s′ if and only if s ≥ s′.

▶ Lemma 6 ([9, Lemma 2.7]). The graph Sκ
d is (κ, Parityd)-universal.

We will work extensively with such tuples, as well as their prefixes and suffixes. For
readability, we also use subscripts to indicate which (odd) coordinates are concerned, for
instance s<x will be our notation for tuples of ordinals < κ indexed with odd priorities < x,
and similarly for s>x. Concatenation of tuples is written like for words, therefore s<xs>x

denotes a tuple indexed by all odd priorities (i.e. an vertex of Sd
κ). We treat s<x and s>x as

different variables, which we may quantify independently.

3 Characterisation of objectives in BC(Σ0
2) with memory ≤ k

We state our main characterisation theorem and its decidability consequences for ω-regular
languages. We assume that the alphabet Σ is countable, therefore automata can also be
taken with countable sets of states.

▶ Theorem 7 (Main characterisation). Let W be a BC(Σ0
2) objective and let k ∈ N. The

following are equivalent:
(i.) W has memory ≤ k (resp. chromatic memory ≤ k) on games of size ≤ 22ℵ0 .
(ii.) For any automaton A recognising W , there is a (chromatic) k-blowup B of A which is

k-wise ε-complete and recognises W .
(iii.) There is a deterministic (chromatic) k-automaton A which is k-wise ε-completable

and recognises W . If W is recognised by a deterministic automaton of size n, then A
can be taken of size kn.

(iv.) For every cardinal κ, there is a (chromatic) (κ, W )-universal graph which is well-
founded and k-wise ε-complete.

(v.) W has (chromatic) memory ≤ k on arbitrary games.

For ω-regular W given by a deterministic automaton B of size n, this allows to compute
the (chromatic) memory in NP: guess a deterministic automaton A of size ≤ kn and
a (chromatic) k-wise ε-completion Aε, and check if L(B) ⊆ L(A) and if L(Aε) ⊆ L(B),
which can be done in polynomial time, since A and B are deterministic [11]. Prior to our
work, neither computing the memory nor the chromatic memory was known to be decidable
(although the chromatic memory over finite graphs can be computed in exponential time [20]).

▶ Corollary 8 (Decidability in NP). Given an integer k and a deterministic automaton A,
the problem of deciding if L(A) has (chromatic) memory ≤ k belongs to NP.

Our main contribution is the implication from (i) to (ii), which is the object of Section 3.1.
We proceed in Section 3.2 to show that (ii) implies (iii) which is straightforward. The
implication (iii) =⇒ (iv) is adapted from [8] and presented in Section 3.3. Finally, the
implication (iv) =⇒ (v) is the result of [10] (Theorem 5), and the remaining one is trivial.

3.1 Existence of k-wise ε-complete automata: Proof overview
We start with the more challenging and innovative implication: how to obtain a k-wise
ε-complete automaton given an objective in BC(Σ0

2) with memory k (that is, (i) =⇒ (ii)).
In this Section, we give a detail overview of the proof. Full details are given in Appendix B.

▶ Proposition 9. Let W be an objective recognised by an automaton A, and assume that W

has (chromatic) memory ≤ k on games of size ≤ 22ℵ0 . Then there is a (chromatic) k-blowup
B of A recognising W which is k-wise ε-complete.
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We assume that W has memory ≤ k on games of size ≤ κ; we discuss the chromatic case
at the end of the section. Let A be an automaton recognising W ; we aim to construct a
k-blowup B of A which is ε-complete. We let S denote Sκ

d , the (κ, Parityd)-universal graph
defined above.

We consider the cascade product A⋉S; this is a (Σ∪{ε})-graph which intuitively encodes
all possible accepting behaviours in A. Then we apply the structuration result (Theorem 4)
to A⋉S which yields a k-blowup G of A⋉S which is well-founded and k-wise ε-complete (as
a graph). Stated differently, up to blowing the graph A⋉ S into k copies, we have been able
to endow it with many ε-transitions, so that over each copy, ε−→ defines a well-order. Note
that the states of G are of the form (q, m, s), with q ∈ V (A), m ∈ {1, . . . , k} and s ∈ V (S).

The states of B will be V (B) = V (A) × {1, . . . , k}. The challenge lies in defining the
transitions in B, based on those of G.

Given a state (q, m) ∈ V (B) and a transition q
c:y−−→ q′ in A, where c ∈ Σ∪{ε}, by applying

the definitions we get transitions of the form (q, m, s) c−→ (q′, m′, s′) in G, for different values
of m′, whenever s

y−→ s′ in S. We will therefore define transition (q, m) c:y−−→ (q′, m′) in Bε if
m′ matches suitably many transitions as above; for now, we postpone the precise definition.

We should then verify that the obtained automaton B:
is a k-blowup of A,
is ε-complete, and
recognises W .

The first two items above state that B should have many transitions: at least those inherited
from A, and in addition a number of ε-transitions. This creates a tension with the third
item, which states that even with all these added transitions, the automaton B should not
accept too many words.

Let us focus on the third item for now, which will lead to a correct definition for B. Take
an accepting run

(q0, m0) c0:y0−−−→ (q1, m1) c1,y1−−−→ . . .

in B, where x = lim infi yi is even; for the sake of simplicity, assume that all yi’s are ≥ x.
We should show that its labelling w = c0c1 . . . belongs to W . To this end, we will decorate
the run with labels s0, s1, · · · ∈ S so that

(q0, m0, s0) c0−→ (q1, m1, s1) c1−→ . . .

defines a path in G, which concludes since G satisfies W .
Recall that the elements of S are tuples of ordinals < κ indexed by d/2 odd priorities.

We use s<x (resp. s>x)to refer to a tuple indexed by priorities up to x− 1 (resp. from x + 1).
To construct the si’s, we fix a well chosen prefix s<x ∈ κxodd which will be constant, and

proceed as follows.

(a.) If yi = x, then we set si = s<xs>x, for some s>x which depends only on ci.
(b.) If yi < x, then we set si = s<xs>x, for some s>x which depends on ci as well as si+1.

At this stage the reader may be worried that the backward induction underlying the
above definition is not well-founded; however, since the first case occurs infinitely often,
the backward induction from the second item is only performed over finite blocks (see also
Figure 2 in Appendix B).

This leads to the following definition for B, where x is an even priority:

(q, m) c:x−−→ (q′, m′) in B ⇐⇒ ∃s<x∃s>x∀s′
>x, (q, m, s<xs>x) c−→ (q′, m′, s<xs′

>x) in G,

(q, m) c:x+1−−−−→ (q′, m′) in B ⇐⇒ ∃s<x∀s′
>x∃s>x, (q, m, s<xs>x) c−→ (q′, m′, s<xs′

>x) in G.
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The first line corresponds to point (a.) above, where s>x can be chosen independently of
s′

>x, whereas the second line corresponds to point (b.), since the choice of s>x is conditioned
on the value of s′

>x. (For priorities > x + 1, we may apply either the first or second line,
depending on the parity, to get the required conclusion.)

The remaining issue is that the choice of the fixed common prefix s<x should be made
uniformly, regardless of the transition. This is achieved thanks to an adequate extraction
lemma (which extends the pigeonhole principle to the case at hands), which finds a large
enough subset T of κ[d]odd , so that transitions (q, m, s) −→ (q′, m′, s′) are similar for different
choices of s, s′ ∈ T . This ensures that s<x can be chosen uniformly.

There remains to verify that B is indeed a k-blowup of A and that it is ε-complete, which
will follow easily from the definitions and ε-completeness of G (this is because, after removing
“∃s<x” from the definition above, the second line resemble the negation of the first).

For the chromatic case, the proof is exactly the same, we should simply check that if G is
chromatic (which is guaranteed by Theorem 4), then the so is the obtained automaton B.

3.2 Existence of deterministic ε-completable automata
We now prove the implication from (ii) to (iii) in Theorem 7. Take A to be a deterministic
automaton recognising W , and let Bε be the obtained k-blowup of A which is (chromatically)
k-wise ε-complete and recognises W . Then let B be obtained from Bε by only keeping,
for each state (q, m) ∈ V (B) and each transition q

a:y−−→ q′ in A, a single transition of
the form (q, m) a:y−−→ (q′, m′) chosen arbitrarily. Note that B is a k-blowup of A, so we
have: L(A) ⊆ L(B) ⊆ L(Bε). We conclude that B is a deterministic (chromatically) k-wise
ε-completable automaton recognising W , as required.

3.3 From deterministic ε-completable automata to universal graphs
We now prove the implication from (iii) to (iv) in Theorem 7. This result was already proved
in [9, Prop. 5.30] for the case of k = 1; extending to greater values for k presents no difficulty.

Let B be a deterministic6 (chromatic) k-wise ε-completable automaton recognising W

and Bε be an ε-completion. Fix a cardinal κ and let S denote Sκ
d . Consider the cascade

product U = Bε ⋉S. We claim that U is (chromatic) k-wise ε-complete and (κ, W )-universal.
Universality follows from the facts that B is deterministic and S is (κ, Parityd)-universal.

▷ Claim 10. The graph U = Bε ⋉ S is (κ, W )-universal.

Proof. Take a tree T of size < κ which satisfies W . We should show that T → U . Since B is
deterministic, we can define a labelling ρ : V (T )→ V (B) by mapping t0 to q0 and t 7→ q if
the run of B on the finite word labelling the path t0 −→ t ends in q. Then, any infinite path
from t0 in T is mapped to a run in B that is accepting (since T satisfies W ). Therefore the
tree T ′ obtained by taking T and replacing edge-labels by the priorities appearing in their
ρ-images satisfies Parityd and has size < κ, so there is a morphism µ : T → S. It is a direct
check that (ρ, µ) : V (T )→ V (B)× V (S) = V (U) indeed defines a morphism. ◁

Showing that U is k-wise ε-complete is slightly trickier.

▷ Claim 11. The graph U = Bε ⋉ S is well-founded and (chromatic) k-wise ε-complete.

6 For the purpose of this proof, history-determinism would be sufficient (we refer to [1] for the definition
and context on history-determinism).
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Proof. Well-foundedness of U follows directly from Lemma 2. Let us write B1, . . . , Bk for the
k parts of Bε; the k parts of U will be B1×V (S), . . . , Bk ×V (S). If applicable, chromaticity
is a direct check. Let (b, s), (b′, s′) ∈ V (U) be in the same part, i.e. b, b′ ∈ Bi for some i. Let
x0 be the minimal even priority such that b

ε:x0−−→ b′ in Bε (if such an x does not exist then
x0 = d + 2). Then let y0 be the minimal odd priority such that s′

≤y0
> s≤y0 (as previously,

if s = s′ then we let y0 = d + 1). We distinguish two cases.
(1) If x0 < y0. Then we have b

ε:x0−−→ b′ in Bε and s<x0 = s′
<x0

which gives s
x0−→ s′ in S.

Thus we get (b, s) ε−→ (b′, s′) in U .
(2) If y0 < x0. Then s′

≤y0
> s≤y0 , which gives s′ y0−→ s in S. Since Bε is k-wise ε-completable

and by definition of x0, we also have b′ ε:y0−−→ b in Bε, therefore (b′, s′) ε−→ (b, s) in U .

We conclude that either (b, s) ε−→ (b′, s′) or (b′, s′) ε−→ (b, s), as required. ◁

4 Union of objectives

In this section, we establish a strong form of the generalised Kopczyński conjecture for
BC(Σ0

2) objectives. An objective W ⊆ Σω is prefix-increasing7 if for all a ∈ Σ and w ∈ Σω,
it holds that if w ∈ W then aw ∈ W . In words, one remains in W when adding a finite
prefix to a word of w. Examples of prefix-increasing objectives include prefix-independent
and closed objectives.

▶ Theorem 12. Let W1, W2 ⊆ Σω be two BC(Σ0
2) objectives over the same alphabet, such

that W2 is prefix-increasing. Assume that W1 has memory ≤ k1 and W2 has memory ≤ k2.
Then W1 ∪W2 has memory ≤ k1k2.

▶ Remark 13. The assumption that one of the two objectives is prefix-increasing is indeed
required: for instance if W1 = aa(a + b)ω and W2 = bb(a + b)ω, which are positional but not
prefix-increasing, the union (aa + bb)(a + b)ω is not positional (it has memory 2).
▶ Remark 14. The bound k1k2 in Theorem 12 is tight: For every k1, k2, there are object-
ives W1, W2 with memories k1, k2 respectively, such that W1 ∪W2 has memory exactly
k1k2. One such example is as follows: let Σ = {a1, . . . , ak1 , b1, . . . , bk2} and W1 = {w |
w contains at least two different ai infinitely often} and W2 = {w | w contains at least two
bi infinitely often}. We can see that W1, W2 and W1 ∪W2 have memory, respectively, k1, k2,
and k1 · k2 by building the Zielonka tree of these objectives and applying [15, Thms. 6, 14].

The rest of the section is devoted to the proof of Theorem 12. We explicit a construction
for the union of two parity automata, inspired from the Zielonka tree of the union of two
parity conditions, and show that it is (k1k2)-wise ε-completable.

Union of parity languages. We give an explicit construction of a deterministic parity
automaton T recognising the union of two parity languages, which may be of independent
interest. This corresponds to the automaton given by the Zielonka tree of the union (a
reduced and structured version of the LAR).

We let [d1] = {0, 1, . . . , d1} and [d2]∗ = {1∗, . . . , d∗
2}. Let [d1]odd and [d2]∗odd denote the

restrictions of [d1] and [d2]∗ to odd elements. By a slight abuse of notation, we sometimes
treat elements in [d2]∗ as natural numbers (e.g. when comparing them).

7 In other papers [22, 23, 10] this notion is called prefix-decreasing, as Eve is seen as a “minimiser” player
who aims to minimise some quantity.
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Alphabet. The input alphabet is [d1]× [d2]∗, and we write letters as (y, z). The index of
T is d1 + d2, we use the letter t for its output priorities.

States. States are given by interleavings of two strictly increasing sequences of [d1]odd
and [d2]∗odd. Any state can be taken as initial. For instance, for d1 = d2 = 6, an example of
a state is:

τ = ⟨1, 3, 1∗, 5, 3∗, 5∗⟩.
1 2 3 4 5 6

We use τ to denote such a sequence, which we index from 1 to (d1 + d2)/2, and write τ [i]
for its i-th element. For x ∈ [d1], x odd, we let indτ (x) = i for the index such that τ [i] = x.
For x ≥ 2 even, we let indτ (x) be the index i such that τ [i] = x− 1. We let indτ (0) = 0. We
use the same notation for y ∈ [d2]∗, y ≥ 1. For example, in the state above, indτ (2∗) = 3.

The intuition is that a state stores a local order of importance between input priorities.

Transitions. Let τ be a state and (y, z) an input letter. We define the transition
τ

(y,z):t−−−−→ τ ′ as follows:
Let i = min{indτ (y), indτ (z)}. In the following, we assume i = indτ (y) (the definition for

i = indτ (z) is symmetric). We let t = 2i, if y even, and t = 2i− 1 if y is odd. If y is even, we
let τ ′ = τ . If y is odd, let i′ be the smallest index i < i′ such that τ [i′] ∈ [d2]∗, and let τ ′

be the sequence obtained by inserting τ [i′] on the left of τ [i] (or τ ′ = τ if no such index i′

exists). Formally,

τ ′[j] = τ [j] for j < i and i′ < j, τ ′[i] = τ [i′] and τ ′[j] = τ [j − 1] for i < j ≤ i′.

For example, for the state above, we have: ⟨1, 3, 1∗, 5, 3∗, 5∗⟩ (3,2∗):3−−−−−→ ⟨1, 1∗, 3, 5, 3∗, 5∗⟩.

▶ Lemma 15. The automaton T recognises the language

L = {w ∈ ([d1]× [d2]∗)ω | π1(w) ∈ Parityd1 or π2(w) ∈ Parityd2}.

Proof. We show that L ⊆ L(T ), the other inclusion is similar (and implied by Lemma 19
below). Let (y1, z1)(y2, z2) · · · ∈ W , and assume w.l.o.g. that y1y2 · · · ∈ Parityd1 . Let
ymin = lim inf yi, which is even, and let n0 be so that for all n ≥ n0 we have ymin ≤ yn. Let

τ0
(y1,z1):t1−−−−−−→ τ1

(y2,z2):t2−−−−−−→ . . .

denote the corresponding run in T . Let in = indτn
(ymin) be the index where ymin−1 appears

in τn. Note that the sequence (in)n≥n0 is decreasing. Let n1 be the moment where this
sequence stabilises, i.e., in = in1 for n ≥ n1. By definition of the transitions of T , for
n ≥ n1 all output priorities are ≥ 2in1 , and priority 2in1 is produced every time that a letter
(ymin, zn) is read. We conclude that T accepts w. ◀

0-freeness of automata for prefix-increasing objectives. The fact that W2 is prefix-
increasing will be used via the following lemma. It recasts the fact that we can add ε:1−−→
transitions everywhere to automata recognising prefix-increasing objectives.

▶ Lemma 16. Let W a be prefix-increasing objective with memory ≤ k. There exists a
deterministic k-wise ε-completable automaton A recognising W and an ε-completion Aε of
A such that Aε does not have any transition with priority 0.
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Proof. First, take any automaton A0 recognising W . Then let A1 be obtained by shifting
every priority from A0 by 2. Clearly A1 also recognises W and does not have any transition
with priority 0. Then apply Proposition 9 to get a k-blowup A of A1 which is k-wise
ε-completable, and let Aε denote the corresponding ε-completion. Since A has no transition
with priority 0, the only possible such transitions in Aε are ε-transition. Then remove all
ε-transitions with priority 0 in Aε, and add ε:1−−→ transitions between all pairs of states in Aε

(in both directions).
Clearly, the obtained automaton Ãε is ε-complete and has no transition with priority

0. There remains to prove that it recognises W . Take an accepting run in Ãε and observe
that the priority 1 is only seen finitely often. Hence from some moment on, the run coincides
with a run in Aε. We conclude since W is prefix-increasing. ◀

Main proof: ε-completion of the product. We now proceed with the proof of Theorem 12.
Using Theorem 7, for l = 1, 2, we take deterministic kl-wise ε-completable automata Al of
index dl recognising Wl, and its ε-completion Aε

l . For l = 2, we assume thanks to Lemma 16
that Aε

2 does not have any transition with priority 0.
We consider the product A = (A1 ×A2) ⋉ T , with states V (A1)× V (A2)× V (T ) and

transitions (q1, q2, τ) a:t−−→ (q′
1, q′

2, τ ′) if q1
a:y−−→ q′

1 in A1, q2
a:z−−→ q′

2 in A2, and τ
(y,z):t−−−−→ τ ′

in T . The correctness of such a construction is folklore.8

▷ Claim 17. The automaton A is deterministic and recognises W = W1 ∪W2.

Therefore, there only remains to show the following lemma.

▶ Lemma 18. The automaton A = (A1 ×A2) ⋉ T is (k1k2)-wise ε-completable.

The ε-completion of A will be a variant of a product of the form Aε
1 ×Aε

2 ⋉ T , where T
is a non-deterministic extension of T with more transitions, but which still recognises the
same language.

The automaton T . Intuitively, we obtain T by allowing to reconfigure the elements of
index > i in a state τ by paying an odd priority 2i− 1, as well as allowing to move elements
of [d1] to the left. We precise this idea next.

We order the states of T lexicographically, where we assume that x < y for x ∈ [d1] and
y ∈ [d2]∗. Formally, we let τ < τ ′ if for the first position j where τ and τ ′ differ, τ [j] ∈ [d1]
(and therefore necessarily τ ′[j] ∈ [d2]∗). We let τ [..i] be the prefix of τ up to (and including)
τ [i]. We write τ <i τ ′ if τ [..i] < τ ′[..i].

Let τ
(y,z):t−−−−→ be a transition in T as above, and i0 = min{indτ (y), indτ (z)} be the index

determining t (i.e. t ∈ {2i0 − 1, 2i}). The automaton T contains a transition τ
(y,z):t′

−−−−→ τ ′ if:

1. t′ = t is odd, and τ ′ ≤i0−1 τ ; or
2. t′ = t is even, and τ ′ ≤i0 τ ; or
3. t′ ∈ {2i′ − 1, 2i′} for some i′ ≤ i0 and τ ′ <i′ τ . (Note that, if t is odd, this includes all

(possibly even) t′ ≤ t + 1.)

In words, we are allowed to output a small (i.e. important) priority when following a
strict decrease on sufficiently small components in τ . Note that transitions in T also belong
to T thanks to the rules (1) and (2).

8 A1 ×A2 can be seen as a Muller automaton with acceptance condition the union of two parity languages.
The composition with T yields a correct parity automaton, as T recognises the acceptance condition.
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▶ Lemma 19. The automaton T recognises the same language as T .

Proof. It is clear that L(T ) ⊆ L(T ). We show the other inclusion.
Consider

τ0
(y1,z1):t1−−−−−−→ τ1

(y2,z2):t2−−−−−−→ . . . , an accepting run in T .

Let tmin = lim inf t1t2 . . . , which is even. Let imin = tmin/2 be the index responsible for
producing priority tmin. Let n0 be such that tn ≥ tmin for all n ≥ n0. Observe that for
all n ≥ n0, we have τn ≥(imin−1) τn+1, and therefore there is n1 ≥ n0 such that the prefix
τn[..imin − 1] is the same for all n ≥ n1. In fact, the prefix τn[..imin] must be constant too,
as we can only modify τn[imin] using rule (1.) and that would output priority tmin − 1.
Assume w.l.o.g. that τn[imin] = y ∈ [d1]odd. Now, for each n ≥ n1 it must be that
yi ≥ y + 1 and it must be that yi = y + 1 each time that priority tmin is produced. Therefore,
lim inf y1y2 · · · = y + 1 is even. ◀

The ε-completion. We define Aε as a version of the cascade product of Aε
1 ×Aε

2 with T ,
in which ε-transitions are also allowed to use the transitions of T . We let ≼ denote the
preference ordering over priorities, given by 1 ≼ 3 ≼ . . . ≼ d − 1 ≼ d ≼ . . . 2 ≼ 0 (d even).
The transitions in Aε are defined as follows:

For a ∈ Σ: (q1, q2, τ) a:t−−→ (q′
1, q′

2, τ ′) if this transition appears in (A1 ×A2) ⋉ T .

(q1, q2, τ) ε:t−→ (q′
1, q′

2, τ ′) if q1
ε:y−−→ q′

1 in Aε
1, q2

ε:z−−→ q′
2 in Aε

2, and τ
(y,z):t′

−−−−→ τ ′ in T with
t′ ≼ t.

Note that the condition t′ ≼ t simply allows to output a less favorable priority, so it does
not create extra accepting runs. By definition, Aε has been obtained by adding ε-transitions
to A. It is a folklore result that composition of non-deterministic automata also preserves
the language recognised, so this construction is correct.

▷ Claim 20. The automaton Aε recognises W .

Therefore, we there only remains to prove the following lemma.

▶ Lemma 21. The automaton Aε is (k1k2)-wise ε-complete.

The formal proof of this statement is presented in Appendix C. The k1 parts of Aε
1 and

the k2 parts of Aε
2 naturally induce a partition of the states of Aε into k1k2 parts. Then,

given two states r = (q1, q2, τ) and r′ = (q′
1, q′

2, τ ′) in the same part of Aε, we consider the
longest common prefix of τ and τ ′. We perform a case analysis: Depending on the priorities
of [d1] or [d2]∗ appearing in this prefix, and the transitions ql

ε:x−−→ q′
l of the automata Aε

1,
Aε

2, we will find transitions r
ε:x−−→ r′ or r′ ε:x+1−−−−→ r for all even x.

5 Conclusions and open questions

We characterised objectives in BC(Σ0
2) with memory (or chromatic memory) ≤ k as those

recognised by a well-identified class of automata. In particular, this gives the first known
characterisation of (chromatic) memory for ω-regular objectives, and proves that it is decidable
(in fact even in NP). We also settled (a strengthening of) Kopczyński’s conjecture for BC(Σ0

2)
objectives. We now discuss some directions for future work.
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Memory in finite games. This paper focuses on games over potentially infinite game graphs.
A wide body of literature studies the memory over finite game graphs [20, 5]; we believe that,
for ω-regular objectives, both notions should coincide, and our results should characterise
the memory of ω-regular objectives over finite games too. More precisely, we believe that in
item (i) in Theorem 7, it suffices to assume that W has memory ≤ k over games of size f(n),
for some finite bound f(n), where n is the size of a deterministic automaton representing W .

▶ Question 1 (Version of [27, Conjecture 9.1.2]). Show that if an ω-regular objective has
memory ≤ k over finite game graphs, then it has memory ≤ k over all game graphs.

The hypothesis on ω-regularity is necessary, as this statement already fails in the case
of positionality and closed objectives [13]. We believe that one should be able to adapt the
proof of Proposition 9 to obtain this result, but some new ideas seem to be required. As a
follow-up question one could investigate the bound f(n): can it be assumed polynomial?

Exact complexity of computation of memory. We established that computing the (chro-
matic) memory of an ω-regular objective is in NP. In fact, computing the chromatic memory
is NP-hard already for simple classes of objectives, such as Muller [7] or safety ones [3].
However, no such hardness results are known for non-chromatic memory.

▶ Question 2. Given a deterministic parity automaton A and a number k, can we decide
whether the memory of L(A) is ≤ k in polynomial time?

This question is open already for the simpler case of regular open objectives (that is,
those recognised by reachability automata).

Assymetric 1-to-2-player lifts. A celebrated result of Gimbert and Zielonka [18] states that
if for an objective W both players can play optimally using positional strategies in finite games
where all vertices belong to one player, then W is bipositonal over finite games. This result
has been extended in two orthogonal directions: to objectives where both players require finite
chromatic memory [5, 4] (symmetric lift for memory), and to ω-regular objectives where Eve
can play positionally in 1-player games [8] (asymmetric lift for positionality). In this work,
we have not provided an asymmetric lift for memory, as in most cases no such result can hold.
For BC(Σ0

2) objectives, it is known to fail already for positional objectives [17, Section 7].
For non-chromatic memory, it cannot hold for ω-regular objectives neither, because of the
example described below.

▶ Proposition 22. Let Σn = {1, . . . , n}. For every n, the objective

Wn = {w ∈ Σω
n | w contains two different letters infinitely often}

has memory 2 over games where Eve controls all vertices and memory n over arbitrary games.

Proof. The fact that Wn has memory n follows from [15]. We include the proof that it has
memory 2 over games controlled by Eve in Appendix D. ◀

In his PhD thesis, Vandenhove conjectures that an assymetric lift for chromatic memory
holds for ω-regular objectives [27, Conjecture 9.1.2]. This question remains open.

▶ Question 3. Is there an ω-regular objective with chromatic memory k over games where
Eve controls all vertices and chromatic memory k′ > k over arbitrary games?
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Further decidability results for memory. As mentioned in the introduction, many extensions
of ω-automata (including deterministic ω-Turing machines and unambiguous ω-petri nets [16])
compute languages that are in BC(Σ0

2). We believe that our characterisation may lead to
decidability results regarding the memory of objectives represented by these models.

Objectives in ∆3
0. Some of the questions answered in this work in the case of BC(Σ0

2)
objectives are open in full generality, for instance, the generalised Kopczyński’s conjecture.
A reasonable next step would be to consider the class ∆0

3 = Σ0
3 ∩Π0

3. Objectives in ∆0
3 are

those recognised by max-parity automata using infinitely many priorities [25]. Our methods
seem appropriate to tackle this class, however, we have been unable to extend the extraction
lemma (Lemma 23) used in the proof of Section 3.1.
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A Proof of Theorem 4 (Structuration result)

We now give a proof of Theorem 4.

▶ Theorem 4 (Adapted from Lemma 3.4 in [10]). Let G be a well-founded pointed graph
satisfying an objective W which is assumed to have (chromatic) memory ≤ k over games
of size ≤ 2|G|. There is a (chromatic) k-blowup G′ of G which is well-founded, k-wise
ε-complete, and satisfies W .

The idea is to use choice arenas, which were introduced in Ohlmann’s PhD thesis [22,
Section 3.2 in Chapter 3] for positionality, and then adapted to memory in [8].

Proof. Let H be the game defined as follows. The set of vertices is V (G) ⊔ P̸=∅(V (G)),
where P ̸=∅(V (G)) is the set of non-empty subsets X of V (G), partitioned into VAdam = V (G)
and VEve = P ̸=∅(V (G)). The initial vertex is v0, the one of G. Then the edges are given by
taking those of G, and then adding v

ε←→ X whenever v ∈ X. The objective is W .
In words, when playing in H, Adam follows a path of his choice in G, except that at any

point, he may choose a set X containing the current vertex v, and allow Eve to continue the
game from any vertex of her choice in X. In some sense, Adam can hide the current vertex;
this is especially true if Eve is required to play with finite memory.

Since G satisfies W , Eve wins, simply by going back to the previous vertex v every time
Adam picks an edge v

ε−→ X. (Formally, the corresponding winning strategy has vertices
V (G) ⊔ {(v, X) | v ∈ X}, projection π(v) = v and π(v, X) = X, edges E(G) ∪ {v ε←→ (v, X) |
v ∈ X}, and initial vertex v0.) Therefore by our assumption on W , there is a (chromatic)
winning strategy S with memory k, i.e. V (S) = V (H)× {1, . . . , k}.

Now we define G′ by V (G′) = V (G)×{1, . . . , k}, initial vertex (v0, m0), the initial vertex
of S, and with the edges from E(S) ∩ (V (G′) × (Σ ∪ {ε}) × V (G′)), together with edges
(v, m) ε−→ (v′, m) whenever there is X ∋ v, v′ such that (X, m) ε−→ (v′, m) in S.

We prove that G′ satisfies the conclusion of the theorem, except for well-foundedness
which is dealt with below.

G′ is a k-blowup of G. This is because S is a strategy, and vertices in V (G) belong to
Adam in H. Therefore, for each (v, m) ∈ V (G′), and each edge v

c−→ v′ in G, v
c−→ v′ is

also an edge in H, thus there is m′ such that (v, m) c−→ (v′, m′) is an edge in G′.
In the chromatic case, G′ is chromatic. This is because S is chromatic, therefore by defin-

ition of G′, it is chromatic with the same chromatic update function.
G′ is k-wise ε-complete. Since it is a graph, we should prove that for each v, v′ and each

m, either (v, m) ε−→ (v′, m) or (v′, m) ε−→ (v, m) in G. This follows from applying the
definition of G′ to X = {v, v′}, since either (X, m) ε−→ v or (X, m) ε−→ v′ is an edge in S

(because S is without dead-ends).
G′ satisfies W . This is because S is a winning strategy, and every path in G′ corresponds

to a path in S, by replacing each edge (v, m) ε−→ (v′, m) by (v, m) ε−→ X
ε−→ (v′, m).

There remains a slight technical difficulty, which is that G′ may have ε−→-cycles (in fact,
it even has all ε-self-loops, by applying the definition to X being a singleton). However for
each memory state m, the relation ε−→ has the property that for every subset of states X,
there is v ∈ X (which should be seen as a minimal element) such that every v′ ∈ X satisfies
(v′, m) ε−→ (v, m) in G′.

Therefore for each m, and each X ⊆ V (G) such that X × {m} is a strongly connected
component for ε−→ in G′, we pick an arbitrary strict well-order −→ over X which extends
the ε-edges already present in G over X. This is possible because G is assumed G to be
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well-founded (and it is necessary so that the obtained graph remains a k-blowup of G).
Finally, we rewire ε-edges over X × {m} so that they correspond to −→; it is not hard to see
that the above points are not broken by this construction. ◀

B Full proof of (i) =⇒ (ii) in Theorem 7 (Existence of k-wise
ε-complete automata)

We prove the following proposition.

▶ Proposition 9. Let W be an objective recognised by an automaton A, and assume that W

has (chromatic) memory ≤ k on games of size ≤ 22ℵ0 . Then there is a (chromatic) k-blowup
B of A recognising W which is k-wise ε-complete.

We let κ = 2ℵ0 and let S denote Sκ
d . Our goal is to define a (chromatic) k-blowup B of

A which is k-wise ε-complete and recognises W . For now, we discuss general memory, and
explain below how the proof is (very easily) adapted to the chromatic case.

We start with the extraction lemma mentioned in the overview, then we will present the
definition of B and then prove its correctness.

B.1 A combinatorial lemma: Extracting homogeneous subtrees
As an important part of our proof, we will take the graph S, whose set of vertices is κ[d]odd ,
where [d]odd = {1, 3, . . . , d − 1}, and extract from it a large enough subgraph which is
homogeneous. This requires a combinatorial lemma which we now describe.

By a slight abuse of terminology (since this is not consistent with the definition of trees
from the preliminaries), we use the terminology “signature trees” to refer to subsets of κ[d]odd .
Elements of the subsets should be thought of as leaves of the tree, while their (non-proper)
prefixes correspond to nodes. More precisely, a node of level x, where x is an even priority
from [d], in a signature tree T is a tuple s<x ∈ κxodd such that there exists s>x satisfying
s<xs>x ∈ T .

The subtree rooted at a node s<x of level x is defined to be the tree {s>x | s<xs>x ∈ T}.
We say that a tree T is everywhere cofinal if for each node s<x, the subtree rooted at x is
cofinal in κ(d−x)odd . An inner labelling of a tree T by L is a map λ assigning a label in L to
every node in T . We are now ready to state the extraction lemma We let κ = 2ℵ0 .

▶ Lemma 23. Let λ be an inner labelling of κdodd by L, where L is countable. There is an
everywhere cofinal tree T such that at every level x, λ is constant over nodes of level x.

We say that a labelling as in the conclusion of the lemma is constant per level.

Proof. We prove the lemma by induction on d. For d = 0 there is nothing to prove since dodd
is empty; let d ≥ 1 and assume the result known for d− 2. For each node s at level 2, apply
the induction hypothesis on the subtree of κdodd rooted at s<2, which gives an everywhere
cofinal tree T ′ and a labelling λ′ which is constant per level over T ′. Let ℓ′

0, ℓ′
2, . . . , ℓ′

d−2
denote the constant values of λ′ on the corresponding levels of T ′, and define the new labelling
of s to be the tuple (λ(s), ℓ′

0, . . . , ℓ′
d−2).

Now since there are at most countably-many new labellings, and there are κ = 2ℵ0 nodes
at level 2, there is a new labelling ℓ such that cofinaly-many nodes have this new labelling.
We conclude by taking T to be the union of {s} × T ′

s, where s ranges over nodes at level 2
with the new labelling ℓ, and T ′

s are the corresponding everywhere cofinal trees. ◀
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B.2 Definition of B
Consider the cascade productA⋉S. By Lemma 2, it satisfies W and is well-founded. Moreover
it has size ≤ κ, so by our assumption on W , we may apply Theorem 4. This yields a k-blowup
G of A⋉ S which is k-wise ε-complete. Let us write V (G) = V (A) × {1, . . . , k} × V (S).
We close G by transitivity, meaning that we add transitions (q, m, s) c−→ (q′, m′, s′), for
c ∈ Σ ∪{ε}, whenever (q, m, s) ε∗cε∗

−−−→ (q′, m, s′); the obtained graph G still satisfies W .
Here comes the important definition: say that (q, m) strongly c-dominates (q′, m′) at

node s<x if

∃s>x∀s′
>x (q, m, s<xs>x) c−→ (q′, m′, s<xs′

>x) in G,

and that (q, m) weakly c-dominates (q′, m′) at s<x if

∀s′
>x∃s>x (q, m, s<xs>x) c−→ (q′, m′, s<xs′

>x) in G,

where c ∈ Σ ∪{ε}. Note that strong domination implies weak domination. The type of a
node s<x is the information, for each q, q′, m, m′ and c, of whether (q, m) strongly or weakly
(or not at all) c-dominates (q′, m′). This gives finitely-many possibilities for fixed q, q′, m, m′

and c, and therefore there are in total a countable number of possible types. Thus Lemma 23
yields a tree T ⊆ κα which is everywhere cofinal and such that for all x, nodes at level x in
T all have the same type tx.

We are now ready to define B. We put V (B) = V (A) × {1, . . . , k}, and for each even
x ∈ [d] and c ∈ Σ ∪{ε}, we define transitions by

(q, m) c:x−−→ (q′, m′) if (q, m) strongly c-dominates (q′, m′) in tx

(q, m) c:x+1−−−−→ (q′, m′) if (q, m) weakly c-dominates (q′, m′) in tx.

Here is the main lemma, which proves the direct implication in Theorem 7.

▶ Lemma 24. Automaton B is a k-blowup of A, it is k-wise ε-complete and it recognises W .

The remainder of the section is devoted to proving Lemma 24.

B.3 Correctness of B: Proof of Lemma 24
There are a few things to show. The interesting argument is the one that shows that B
recognises W (Lemma 29 below). We should also prove there is no accepting run over words
in Σ∗εω, which will be done below as part of Lemma 29.

B is a k-blowup of A. We should prove the following.

▷ Claim 25. For all transitions q
a:y−−→ q′ in A, and any m ∈ {1, . . . , k} there is some

m′ ∈ {1, . . . , k} such that (q, m) a:y−−→ (q′, m′) in B.

Proof. Let q
a:y−−→ q′ be a transition in A and let m ∈ {1, . . . , k}. Since G is a k-blowup of

A×S, for all edges s
y−→ s′ in S there is m′ ∈ {1, . . . , k} such that (q, m, s) a−→ (q′, m′, s′) in G.

Although both proofs are similar, we distinguish two cases.
If y = x is even. We prove that for all nodes s<x at level x, (q, m) strongly c-dominates
(q′, m′) for some m′. Therefore the same is true in tx which implies the wanted result.
We let s>x = 0>x, the zero sequence in κ(d−x)odd . Now for all s′

>x ∈ κ(d−x)odd , it holds
that s<xs>x = s<x0>x

x−→ s<xs′
>x in S, so there is m′ such that (q, m, s<xs>x) a−→

(q, m′, s<xs′
>x) in G and thus also in G; in this case say that m′ is good for s′

>x.
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Now we claim that if m′ is good for s̃′
>x ≥ s′

>x, then it is also good for s′
>x. Indeed,

we have (q′, s<xs̃′
>x) ε−→ (q′, s<xs′

>x) in A× S therefore since ε-transitions preserve the
memory state in G (Theorem 4) we have (q′, m′, s<xs̃′

>x) ε−→ (q′, m′, s<xs′
>x) in G thus

(q, m, s<xs>x) a−→ (q′, m′, s<xs′
>x) in G.

Therefore the sets M ′
s′

>x
of m′ which are good for s′

>x form a decreasing chain of non-
empty subsets of {1, . . . , k} and thus their intersection is non-empty: there is some m′

which is good for all s′
>x, as required.

If y = x + 1 is odd. We now prove that for all nodes s<x at level x, (q, m) weakly
c-dominates (q′, m′) for some m′. Let s′

>x ∈ κ(d−x)odd . Then for any s>x such that
sx > s′

x, it holds that s<xs>x
x+1−−→ s′

<xs>x in S, so there is some m′ such that
(q, m, s<xs>x) a−→ (q, m′, s<xs′

>x) in G. Hence there is some m′ such that, for cofin-
itely many s>x, (q, m, s<xs>x) a−→ (q, m′, s<xs′

>x) is an edge in G and thus also in G; say
that such an m′ is good for s′

>x.
Now, we claim that if m′ is good for s̃′

>x ≥ s′
>x, then it is also good for s′

>x. Indeed,
as in the first case, we have (q′, m′, s̃<xs′

>x) ε−→ (q′, m′, s<xs′
>x) in G thus for cofinitely

many s>x we have (q, m, s<xs>x) a−→ (q′, m′, s<xs′
>x) in G.

We conclude just as above. ◁

B is k-wise ε-complete. We should prove the following claim.

▷ Claim 26. For every even x, memory state m and states q, q′, either (q, m) ε:x−−→ (q′, m) or
(q′, m) ε:x+1−−−−→ (q, m).

Proof. Assume that (q, m) ε:x+1−−−−→ (q′, m) is not a transition in B. Consider a node s<x at
level x in T : it has type tx and thus (q, m) does not weakly ε-dominate (q′, m) at s<x. This
rewrites as

∃s′
>x∀s>x (q, m, s<xs>x) ε−→ (q′, m, s<xs′

>x) is not an edge in G.

Now since G is ε-complete, we get

∃s′
>x∀s>x (q′, m, s<xs′

>x) ε−→ (q, m, s<xs>x) in G,

therefore (q′, m) strongly ε-dominates (q, m) at s<x, which concludes. ◁

B recognises W . We now turn to the more involved part. We start by proving the following
two technical lemmas.

▶ Lemma 27. Assume that (q, m) c:y−−→ (q′, m′) in B for some y. There is a map f : T → T

such that for all s ∈ T ,
there is an edge (q, m, f(s)) c−→ (q′, m′, s) in G; and
it holds that f(s)<y = s<y.

Proof. Let x + 1 be the smallest odd priority ≥ y. Since strong domination implies weak
domination, and (q, m) c:y−−→ (q′, m′), we have in any case that (q, m) weakly c-dominates
(q′, m′) in tx. This means that for any s′ = s′

<xs′
>x ∈ T , there exists s>x such that

(q, m, s′
<xs>x) c−→ (q′, m′, s′

<xs′
>x) in G. Now since T is everywhere cofinal, there exists

s̃>x ≥ s>x such that s′
<xs̃>x ∈ T , and we let f(s′) = s′

<xs̃>x. Clearly f(s′)<y = s′
<x =

s′
<y, and also, we have (q, m, s′

<xs̃>x) ε−→ (q, m, s′
<xs>x) in G so the result follows from

ε-transitivity. ◀
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▶ Lemma 28. Assume that (q, m) c:x−−→ (q′, m′) in B for some even x, and let s<x be a node
at level x in T . There is s>x ∈ κ(d−x)odd such that s<xs>x ∈ T and for any s′

>x ∈ κ(d−x)odd ,
(q, m, s<xs>x) c−→ (q′, m′, s<xs′

>x) in G.

Proof. From the definition of strong domination, there is s̃>x such that for all s′
>x, it

holds that (q, m, s<xs̃>x) c−→ (q′, m′, s<xs′
>x) in G. By everywhere confinality of T , there is

s>x ≥ s̃>x such that s<xs>x ∈ T . We conclude (as previously) using ε-transitivity. ◀

We are now ready for the main argument.

▶ Lemma 29. The language of B is contained in W . Moreover, there is no accepting run
labelled by words in Σ∗εω.

Proof. Take an accepting run

(q0, m0) c0:y0−−−→ (q1, m1) c1:y1−−−→ . . .

in B. Let x = lim infi yi (it is even since the run is accepting), and let i0 be such that yi ≥ x

for i ≥ i0.
As explained in the general overview, our goal will be to endow each (qi, mi) with some

si ∈ T such that for all i, (qi, mi, si)
ci−→ (qi+1, mi+1, si+1) in G. This implies the result since

G satisfies W , and since it does not have paths labelled by words in Σ∗εω by well-foundedness.
We pick an arbitrary node s<x at level x in T and proceed as follows:

for each i ≥ i0 such that yi = x, we let s>x be obtained from Lemma 28 and set
si = s<xs>x;
for any other i, we proceed by backwards induction (see Figure 2) and let si = f(si+1),
where f is obtained by applying Lemma 27 to transition (qi, mi)

ci:yi−−−→ (qi+1, mi+1).

a finite prefix

c : x c : x

inside each block, priorities are >x

here, s<x is constant

Figure 2 The run in B (in black), and the order in which the si’s are computed (in red).

For i’s as in the second item, it follows from Lemma 27 that (qi, mi, si)
ci−→ (qi+1, mi+1, si+1),

and moreover, assuming i ≥ i0, that (si)<x = (si+1)<x. Thus for all i ≥ i0 we have
(si)<x = s<x hence we also have, by Lemma 28, that (qi, mi, si)

ci−→ (qi+1, mi+1, si+1) in G

for i’s as in the first item. ◀

C Proof of Theorem 12 (Generalised Kopczyński’s conjecture)

We let Aε be the automaton defined in Section 4 (i.e. a version of the cascade product of
Aε

1 ×Aε
2 with T ). In this appendix we prove:

▶ Lemma 21. The automaton Aε is (k1k2)-wise ε-complete.

First, we need a few remarks on the structure of ε-complete automata. We write q
ε:x+1←−−→ q′

to denote the conjunction of q
ε:x+1−−−−→ q′ and q′ ε:x+1−−−−→ q. Given two states q, q′ in the same
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part of a k-wise ε-complete automaton, we call breakpoint priority of q and q′ the least even
x(0) such that q

ε:x(0)+1←−−−−→ q′ does not hold. Note that this is a property of the unordered pair
{q, q′}. Observe also that by the definition of ε-completeness, we have either q

ε:x(0)

−−−→ q′ or
q′ ε:x(0)

−−−→ q. Moreover, assuming that q
ε:x(0)

−−−→ q′, we also get that there can be no q′ ε:x−−→ q,
for even x, otherwise we would accept some run labelled by Σ∗εω; therefore for even x ≥ x(0)

we also have q
ε:x−−→ q′. To sum up, if x(0) is the breakpoint priority of {q, q′} and q

ε:x(0)

−−−→ q′,
then:

q
ε:y←→ q′ for all odd y < x(0);

q
ε:x−−→ q′ for all x ≥ x(0); and

there is no transition q′ ε:x−−→ q for even x.
Finally, observe that in Aε

2, since there are no transitions with priority 0 (and therefore ε:1−−→
connects every ordered pair of states), breakpoint priorities are always ≥ 2.

We are now ready to prove Lemma 21

Proof of Lemma 21. First observe that the k1 parts of Aε
1 and the k2 parts of Aε

2 naturally
induce a partition of the states of Aε into k1k2 parts. Let r = (q1, q2, τ) and r′ = (q′

1, q′
2, τ ′)

be two states in the same part of Aε, that is, ql and q′
l are in the same part in Aε

l , for l = 1, 2.
We will show that for some even output priority x(0), it holds that:

1. r
ε:x(0)−1←−−−−→ r′; and

2. either r
ε:x(0)

−−−→ r′ or r′ ε:x(0)

−−−→ r.
Note that since r

ε:t−→ r′ in Aε implies r
ε:t′

−−→ r′ for all t′ ≼ t, the two points above imply that
for every even x < x(0) we have r

ε:x+1←−−→ r′ and for every even x ≥ x(0), either r
ε:x(0)

−−−→ r′ or
r′ ε:x(0)

−−−→ r. Therefore, this will prove that Aε is (k1k2)-wise ε-complete.
Let x

(0)
1 and x

(0)
2 denote the breakpoint priorities of {q1, q′

1}, {q2, q′
2} in Aε

1 and Aε
2,

respectively (even and ≥ 2). Let iT be the largest index such that τ [..iT ] = τ ′[..iT ], with
iT = 0 if τ [1] ̸= τ ′[1]. We distinguish two cases, depending on whether some x

(0)
l − 1 appears

in τ [..iT ].

a) iT < indτ (x
(0)
1 ), indτ (x

(0)
2 ). Note that, in particular, 0 < x

(0)
1 , x

(0)
2 .

We show that in this case, we can set x(0) = 2iT + 2. We prove the two points above:
1. We will find odd priorities y1 and y2 such that

q1
ε:y1−−→ q′

1︸ ︷︷ ︸
in A1

and q2
ε:y2−−→ q′

2︸ ︷︷ ︸
in A2

and τ
(y1,y2):x(0)−1−−−−−−−−−→ τ ′︸ ︷︷ ︸

in T

,

which gives the wanted result when applied symmetrically in the other direction.
Consider the element τ [iT + 1] (odd), and assume w.l.o.g. that it belongs to [d1].
We let y1 = τ [iT + 1]. Note that 1 ≤ y1 < x

(0)
1 , as iT + 1 ≤ indτ (x(0)

1 ), and
therefore we have q1

ε:y1←−→ q′
1. We let y2 = x

(0)
2 − 1; by definition of x

(0)
2 we have

q2
ε:y2←−→ q′

2. As indτ (y2) = indτ (x(0)
2 ) > indτ (x(0)

1 ) we have the third wanted transition
τ

(y1,y2):2iT +1−−−−−−−−−→ τ ′ in T , as wanted. By flipping τ and τ ′ and applying the same
reasoning, we get the transition r′ ε:x(0)−1−−−−−→ r, as required (note that we also have
iT < indτ ′(x(0)

1 ), indτ ′(x(0)
2 ) by definition of iT ).

2. We assume w.l.o.g. that τ ′ < τ . By definition of iT , we have that τ ′ <iT +1 τ .
Let z = τ [iT + 1] (which belong to [d2]∗odd if τ ′ <iT +1 τ). As z ≤ x

(0)
2 , we have
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q2
ε:z−−→ q′

2. Also, q1
ε:x(0)

1 −1
−−−−−→ q′

1. Using point (3) of the definition of T , we have

τ
(x

(0)
1 −1,z):2iT +2

−−−−−−−−−−−→ τ ′. We conclude that r
ε:x(0)

−−−→ r′.
b) Either indτ (x

(0)
1 ) ≤ iT or indτ (x

(0)
2 ) ≤ iT . We assume w.l.o.g. that indτ (x(0)

1 ) <

indτ (x(0)
2 ). We let x(0) = 2indτ (x(0)

1 ); note that τ
(x

(0)
1 ,x

(0)
2 −1):x(0)

−−−−−−−−−−−→ and τ
(x

(0)
1 −1,x

(0)
2 −1):x(0)−1

−−−−−−−−−−−−−−−→
in T . We verify the two cases highlighted above.

1. We have ql

ε:x(0)
l

−1
←−−−−→ ql for l = 1, 2. As τ [..iT ] = τ ′[..iT ], thanks to rule (1) in the

definition of T , we have τ
(x

(0)
1 −1,x

(0)
2 −1):x(0)−1

←−−−−−−−−−−−−−→ τ ′, and so we get r
ε:x(0)−1←−−−−→ r′, as

required.

2. We have one of the transitions q1
ε:x(0)

1−−−→ q′
1 or q′

1
ε:x(0)

1−−−→ q1; assume we are in the

first case. Since q2
ε:x(0)

2 −1
←−−−−→ q′

2, we also have τ
(x

(0)
1 ,x

(0)
2 −1):x

−−−−−−−−−→ τ ′, so we conclude that
r

ε:x−−→ r′. ◀

This concludes the proof of Theorem 12.

D Proof of Proposition 22 (No 1-to-2 player lift)

▶ Proposition 22. Let Σn = {1, . . . , n}. For every n, the objective

Wn = {w ∈ Σω
n | w contains two different letters infinitely often}

has memory 2 over games where Eve controls all vertices and memory n over arbitrary games.

Proof. We show that in every game with objective Wn and all vertices controlled by Eve,
if she can win, she has a winning strategy with memory 2. Let G be such a game. By
prefix-independence of Wn, we can assume that Eve wins no matter what is the initial vertex
of G. For each vertex v ∈ V (G), we let χ1(v) be the smallest element in Σn such that there
is a path starting in v that produces a colour c, and we fix one such finite path π1

v = v
uc−→ v′

of minimal length. We let χ2(v) be the second smallest such element (which exists, as Eve
wins the game), and fix a finite path π2

v of minimal length producing it. Note that if v
u−→ v′

is a path in G, then χ1(v) ≤ χ1(v′).
We define a 2-memory strategy for Eve as follows: when in a vertex v and memory state

1, she will take the first edge from π1
v . If this edge has colour χ1(v), we update the memory

state to 2, and keep it 1 on the contrary. When in the memory state 2, she will take the first
edge from π1

v , and update the memory state to 1 if and only if this edge has colour χ2(v).
We show that this strategy ensures the objective W . Let v0

c1−→ v1
c2−→ . . . be an infinite

play consistent with this strategy. Let a = lim sup χ1(vi). We claim that we produce both
a and a colour > a infinitely often. Let i0 be large enough so that χ1(vi) > a for i ≥ i0.
Note that in this case, if vi

u−→ vi′ is a path that does not contain colour χ2(vi), then
χ2(vi′) = χ2(vi). If in step i we are in memory state 1, in exactly |π1

vi
| steps we will produce

output χ1(vi) and change the memory state to 2. Likewise, by the remark above, if we are
in the memory state 2, in |π2

vi
| steps we will produce χ2(vi) > a and change to the memory

state 1. This concludes the proof. ◀
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