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Abstract. We study algorithms for solving parity, mean-payoff and en-
ergy games. We propose a systematic framework, which we call Fast value
iteration, for describing, comparing, and proving correctness of such al-
gorithms. The approach is based on potential reductions, as introduced
by Gurvich, Karzanov and Khachiyan (1988). This framework allows
us to provide simple presentations and correctness proofs of known algo-
rithms, unifying the Optimal strategy improvement algorithm by Schewe
(2008) and the quasi dominions approach by Benerecetti et al. (2020),
amongst others. The new approach also leads to novel symmetric ver-
sions of these algorithms, highly efficient in practice, but for which we are
unable to prove termination. We report on empirical evaluation, compar-
ing the different fast value iteration algorithms, and showing that they
are competitive even to top parity game solvers.
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1 Introduction

Mean-payoff and energy games. The games under study are infinite duration
games where two players, Min and Max, move a token over a finite directed
graph with no sink, where the edges of the graph are labelled by payoffs in Z.
When playing a mean-payoff game, the players optimise (minimise or maximise,
respectively) the asymptotic average payoff. In an energy game, they instead
optimise the supremum cumulative sum of payoffs within [0,∞]. These games
are positionaly determined [13,6]: the two players can play optimally even when
restricted to strategies that only depend on the current position of the game.
We refer to Figure 1 for a complete example.

In this paper, we are interested in the problem of computing energy values
of the vertices in a given game which we call solving the energy game. It easily
follows from positional determinacy that the energy value of a vertex is finite
if and only if its mean-payoff value is non-positive [7]. Therefore solving an
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Fig. 1. Example of a game; circles belong to Min and squares belong to Max. From left
to right, the mean-payoff values are −2,−2,− 1

2
,− 1

2
, 1 and 1, and positional strategies

for mean-payoff values are identified in bold. Energy values are 0, 2, 9, 0,∞ and∞, and
with optimal strategies given by the double-headed arrows.

energy game also solves the so called threshold problem for the associated mean-
payoff game. As it turns out, all state-of-the-art algorithms [3,5,7,12,31,33] for
the mean-payoff threshold problem actually solve the energy game.

Mean-payoff values achieved by positional strategies can be computed in
polynomial time, and therefore the threshold problem belongs to NP ∩ coNP.
Despite numerous efforts, no polynomial algorithm is known. Mean-payoff games
are known [32] to generalise parity games [14,30] which also belong to NP∩coNP
but for which algorithms with quasipolynomial runtime were recently devised [8].
However, quasipolynomial algorithms for parity games do not generalise to mean-
payoff games [16].

Algorithmic paradigms. There are two well-established paradigms for solving en-
ergy games: value iteration (sometimes called “progress measure”) and strategy
improvement. The standard value iteration for energy games (which we will call
Simple value iteration, SVI for short) was introduced by Brim et al. [7]. While
subject to good theoretical (pseudopolynomial) bounds, it is well-known to be
prohibitively slow in practice, as its worse-case behaviour is frequently displayed.
On the other hand, strategy improvement algorithms [4] typically solve practical
instances in a constant number of iterations. Although it offers a useful catego-
rization of older algorithms, the value iteration versus strategy improvement
dichotomy fails to accurately describe a new wave of efficient algorithms.

In recent years, multiple hybrid algorithms – borrowing ideas from both
paradigms – have been put forward. In 2008, Schewe [33] introduced an algorithm
called Optimal strategy improvent (OSI) for solving parity or mean-payoff games.
As explained by Luttenberger [26], Schewe’s presentation of OSI is in fact closer
to value iteration, but it can also be formally cast as a strategy improvement in a
carefully generalised framework allowing for nondeterministic strategies. In 2019,
Dorfman et al. [12] presented a value iteration method augmented by a carefully
crafted acceleration mechanism (which we call DKZ), thereby improving on the
best theoretical guarantees (this algorithm can be seen as a reformulation of the
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GKK algorithm [19], see also [31] for further analyses). Based on the idea of quasi
dominions (similar to Fearnley’s snares [15] in a strategy improvement context),
Benerecetti et al. [2,3] proposed another such acceleration mechanism, obtaining
the algorithm QDPM. Some of these algorithms are extremely efficient: a version
of OSI is a key component in the LTL-synthesis tool STRIX [29,27], which is one
of the top competitors in the annual synthesis competition SYNTCOMP [20].
On the other hand, QDPM is currently the top-performing mean-payoff game
solver [3] while, remarkably, preserving state-of-the-art theoretical guarantees.

Although differences in the performances of these algorithms have been ob-
served empirically [3], we lack a good understanding of how they compare to each
other theoretically, and more generally, of what are the fundamental algorithmic
mechanisms that lead to efficient game solvers in practice.

Contributions. Our contributions are as follows.

(1) Fast value iteration framework. We consider potential reductions, as intro-
duced by Gurvich, Karzanov and Khachiyan [19], to design a systematic method
for producing algorithms for energy games, which we call the fast value itera-
tion framework. A potential is a mapping which assigns a positive weight to
each vertex. Such a potential naturally induces a transformation (a potential
reduction) of the game, which preserves the weight of every cycle and thus the
values in the mean-payoff game. The fast value iteration meta-algorithm (Al-
gorithm 1) simply iterates on potential reductions until a fixpoint is reached.
This meta-algorithm can be instantiated on any given class of potentials, lead-
ing to different algorithms, whose correctness is automatically guaranteed under
mild assumptions on the potentials (Theorem 2). Interestingly, the framework
also provides a symmetric meta-algorithm, for which termination is observed in
practice, but we have not been able to prove it theoretically.

(2) Unifying and simplifying existing algorithms. We revisit various algorithms
in the light of the above framework. Naturally, the classic SVI [7] is captured
(Example 1), as well as the algorithms GKK [19] and DKZ [12] (Section 4.3),
whose original presentations fit the potential reduction framework.

More interestingly, we also capture algorithms showcasing an excellent per-
formance in practice, defying the common belief that VI algorithms are slow. We
unify and simplify the algorithms OSI by Schewe [33] and the involved QDPM
by Benerecetti et al. [2,3]. Our presentations are streamlined (see Section 4 for
details), leading to immediate correctness proofs. It also allows to isolate the
core algorithmic idea underlying these two algorithms, which is a natural adap-
tation of Dijkstra’s algorithm to the two-player setting. We call the obtained
reinterpretation of OSI and QDPM within the fast value iteration framework,
the Positive Path Iteration (PPI).

The abstraction provided by our approach sets the stage to easily craft new
algorithms. Showcasing its applicability, we propose a dynamic version of PPI
(DPPI), which provably breaks the theoretical barrier set by OSI and QDPM
(Theorem ??). Many possibilities for future work are proposed in the conclusion.
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(3) Empirical evaluation. We compare the implementations of the algorithms
described in the fast value iteration framework to OSI and QDPM, as well as
to the top parity game solvers. This evaluation shows: (i) fast value iteration
algorithms are highly efficient in practice, and especially robust towards hard
instances; (ii) alternating versions of the algorithms not only terminate, but are
remarkably efficient.

2 Preliminaries

A game is a tuple G = (G,w, VMin, VMax), where G = (V,E) is a finite sinkless
directed graph, w : E → Z is a labelling of its edges by integer weights, and
VMin, VMax is a partition of V . We set n = |V |,m = |E| and W = max

e∈E
|w(e)|.

We say that vertices in VMin belong to Min and that those in VMax belong to
Max. We now fix a game G = (G,w, VMin, VMax).

We simply write vv′ for an edge (v, v′) ∈ E. A path is a (possibly empty,
possibly infinite) sequence of edges π = e0e1 . . . , with ei = viv

′
i, such that v′i =

vi+1. We write v0 → v1 → . . . to denote such a path. The sum of a finite path π
is the sum of the weights appearing on it, we denote it by sum(π). Given a finite
or infinite path π = e0e1 . . . and an integer k ≥ 0, we let π<k = e0e1 . . . ek−1,
and we let π≤k = π<k+1. Note that π<0 is the empty path, and that π<k has
length k. By convention, the empty path starts and ends in all vertices.

A valuation is a map val : Zω → R∪{∞} assigning a potentially infinite value
to infinite sequences of weights. We use R∞,Z∞ and N∞ to denote respectively
R∪{∞},Z∪{∞} and N∪{∞}. The four valuations studied in this paper are the
mean-payoff, energy, positive-energy, and first-if-positive valuations given by:

MP(w) = lim supk
1
k

∑k−1
i=0 wi ∈ R, En+(w) =

∑kneg−1
i=0 wi ∈ N∞,

En(w) = supk
∑k−1
i=0 wi ∈ N∞, First+(w) = max(w0, 0) ∈ N,

where w = w0w1 . . . is a sequence of weights and kneg = min{k | wk < 0} ∈ N∞
is the first index of a negative weight. For technical convenience, we will also
consider games in which weights are potentially (positively) infinite. We extend
the definitions of En,En+ and First+ to words in (Z∞)ω, using the same formula.
Note that for any w ∈ (Z∞)ω we have En+ ≤ En. The four valuations are
illustrated on a given sequence of weights in Figure 2.

A strategy for Min is a map σ : VMin → E such that for all v ∈ VMin, it
holds that σ(v) is an edge outgoing from v. We say that a (finite or infinite)
path π = e0e1 . . . is consistent with σ if whenever ei = vivi+1 is defined and
vi ∈ VMin, it holds that ei = σ(vi). We write in this case π|=σ. Strategies for
Max are defined similarly and written τ : VMax → E. The theorem below states
that the three valuations are determined with positional strategies over finite
games. It is well known for MP and En and easy to prove for En+. We remark
that positional determinacy also holds for the two energy valuations En and En+

over games where we allow for infinite weights.
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Fig. 2. The three valuations over a given sequence of weights. The mean-payoff value
is given by the slope of the line, which corresponds to the long-term average. In this
case, the mean-payoff is ≤ 0, and both En and En+ are finite.

Theorem 1 ([13,6]). For each val ∈ {MP,En,En+}, there exist strategies σ0
for Min and τ0 for Max such that for all v ∈ V we have

sup
π|=σ0

val(w(π)) = inf
σ

sup
π|=σ

val(w(π)) = sup
τ

inf
π|=τ

val(w(π)) = inf
π|=τ0

val(w(π)),

where σ, τ and π respectively range over strategies for Min, strategies for Max,
and infinite paths from v.

The quantity defined by the equilibrium above is called the value of v in
the val game, and we denote it by valG(v) ∈ R∞; the strategies σ0 and τ0 are
called val-optimal, note that they do not depend on v. The following result
relates the values in the mean-payoff and energy games; this direct consequence
of Theorem 1 was first stated in [7].

Corollary 1 ([7]). For all v ∈ V it holds that

MPG(v) ≤ 0 ⇐⇒ EnG(v) <∞ ⇐⇒ EnG(v) ≤ (n− 1)W.

Therefore computing En-values of the games is harder than the threshold
problem. It is easy deduce En-optimal strategies for Min (which always achieve
MP-value ≤ 0) from the knowledge of the En-values; however no knowledge is
gained about Max strategies besides the winning region (over which En values
are ∞). As explained in the introduction, all state-of-the-art algorithms for the
threshold problem actually compute En values. This shifts our focus from mean-
payoff to energy games.

Attractors. Given a subset S ⊆ V , the attractor AttrMax
G (S) to S in G is defined

to be the set of vertices v such that Max can ensure to reach S from v.

Simple games. A finite path v0 → v1 → . . . → vk is simple if there is no
repetition in v0, v1, . . . , vk−1; note that a cycle may be simple. A game is simple
if all simple cycles have nonzero sum. The following result is folklore and states
that one may reduce to a simple game at the cost of a linear blow up on W . It
holds thanks to the fact that positive mean-payoff values are ≥ 1/n, which is a
well-known consequence of Theorem 1.
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Lemma 1. Let G = (G,w, VMin, VMax) be an arbitrary game. The game G′ =
(G, (n + 1)w − 1, VMin, VMax) is simple and has the same vertices of positive
mean-payoff values as G.

3 Fast value iteration: A meta-algorithm based on
potential reductions

3.1 Potential reductions

Fix a game G = (G = (V,E), w, VMin, VMax). A potential is a map ϕ : V → N∞.
Potentials are partially ordered coordinatewise. We write ϕ = 0 if ϕ(v) = 0 for
all v ∈ V . Given an edge vv′ ∈ E, we define its ϕ-modified weight to be

wϕ(vv′) =

{
∞ if ϕ(v), ϕ(v′) or w(vv′) is ∞,
w(vv′) + ϕ(v′)− ϕ(v) otherwise.

The ϕ-modified game Gϕ is simply the game (G,wϕ, VMin, VMax); informally, all
weights are replaced by the modified weights. Note that the underlying graph
does not change, in particular paths in G and Gϕ are the same. Moving from G
to Gϕ for a given potential ϕ is called a potential reduction.

Weights of cycles are preserved by finite potential reductions, and therefore,
as an easy consequence of positionality (Theorem 1), mean-payoff values are
preserved. Note that any edge outgoing from a vertex v with potential ϕ(v) =∞
has weight ∞ in the modified game, therefore v has En and En+-values ∞ in
Gϕ. Note also that sequential applications of potential reductions correspond to
reducing with respect to the sum of the potentials: (Gϕ)ϕ′ = Gϕ+ϕ′ .

Potential reductions were introduced by Gallai [18] for studying network
related problems such as shortest-paths problems. In the context of mean-payoff
or energy games, they were introduced in [19] and later sometimes rediscovered.

3.2 The fast value iteration meta-algorithm

A potential assigner is a function Ψ that assigns a potential Ψ(G) : V → N∞
to each game G. A potential assigner Ψ induces a fast value iteration algorithm
(called Ψ -FVI) as follows: successively apply potential reductions using the po-
tentials given by Ψ , until a game G′ is reached with Ψ(G′)(V ) ⊆ {0,∞}. For
an arbitrary potential assigner, this algorithm might not terminate, or provide a
final game G′ carrying irrelevant information. However, we show that under mild
hypotheses on Ψ , this algorithm terminates, and EnG′ = Ψ(G′), with the vertices
with En-value 0 corresponding to the vertices with finite value in the original
game. Moreover, the exact En-values of the original game can be recovered from
the sequence of potentials obtained during the computation.

We formalise this idea in Algorithm 1 and Theorem 2. To ensure termination,
we need to artificially increase the potential of some vertices to ∞ whenever a
threshold is reached, and then remove Max’s attractor to ∞. This technique is
standard in value iteration algorithms, see e.g. [7].
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Algorithm 1 Ψ -Fast value iteration algorithm.

Input: Game G with n vertices and maximal weight W
1: Φ← 0 . Φ carries the cumulative sum of potentials
2: do
3: ϕ← Ψ(G)
4: Φ← Φ+ ϕ . Update cumulative sum over G4
5: G ← Gϕ
6: A← AttrMax

G (Φ−1([(n− 1)W + 1,∞]))
7: Set Φ(v) =∞ for all v ∈ A
8: G ← G \A
9: while ϕ 6= 0 and G 6= ∅

10: return Φ

Let us isolate two relevant properties of potential assigners: (1) Soundness:
for any game G, Ψ(G) ≤ EnG ; (2) Completeness: for any G, if Ψ(G) = 0 then
EnG = 0. We also say that a potential ϕ is sound over a given game if condition
(1) is met. We may now state our first main result.

Theorem 2. Let Ψ be a sound and complete potential assigner. Then Algo-
rithm 1 terminates in at most n2W iterations, and returns Φ = EnG.

Remark 1. Note that the hypotheses of the theorem are minimal. If a potential
assigner Ψ is not sound, there is a game G for which the algorithm returns
Φ ≥ Ψ(G) > EnG . If it does not satisfy (ii), there is a game for which the
algorithm stops in the first iteration, returning the potential Φ = 0 6= EnG .

Example 1 (Simple value iteration of Brim et al. [7]). Define the potential as-
signer ΨFirst+ by assigning the potential First+G (v), the first-if-positive value, to a
vertex v. This potential is easily computed in linear time as it coincides for each
Max (resp. Min) vertex v, with the maximal (resp. minimal) value of max(w, 0)
where w ranges over outgoing weights. Clearly ΨFirst+ ≤ EnG , since for any
sequence of weights w0w1 . . . , it holds that First+(w0w1 . . . ) ≤ En(w0w1 . . . ).
Finally, if ΨFirst+ = 0, then from any vertex Min can ensure that no positive
weight is ever seen, which entails EnG = 0. We conclude that ΨFirst+ is sound;
the fast value iteration algorithm coincides with that of [7]5.

Example 2. Any (determined) valuation val : Zω → R∞ induces a potential as-
signer Ψval, namely, the one that assigns to each game G the potential given by
valG(v). If the valuation satisfies val ≤ En over weight sequences, then Ψval is
sound. Moreover, if val(w0w1...) > 0 whenever w0 > 0, then Ψval is complete.
This includes the previous example, and more interestingly, this includes the
valuation En+, which is the object of Section 4.1.

4By a small abuse of notation, we allow to sum potential with different domains. If
ϕ : V → N∞ and ϕ′ : V ′ → N∞ with V ′ ⊆ V , then ϕ+ ϕ′(v) = ϕ(v) for all v /∈ V ′.

5Formally, reducing from complexity O(n2mW ) to O(nmW ) requires some addi-
tional bookkeeping.
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Of course, an important requirement over Ψ to make Algorithm 1 relevant
is that we should be able to compute Ψ(G) efficiently. Note that the poten-
tial assigner corresponding to the En-values of a game satisfies all the required
hypothesis, and makes Algorithm 1 terminate in a single iteration.

∞-attraction. In many occurrences, the algorithm can be simplified by removing
lines 6-8 and stopping when a fixpoint is reached (which can be implemented by
replacing line 9 with “while GΨ(G) 6= G”). We say that potential assigners with
this property are ∞-attracting.

Modularity. As noted in the introduction (a version of) OSI is the algorithm used
by STRIX [29,27], the top LTL-synthesis tool in SYNTCOMP [20]. However, it
is well-known that other parity game solvers are faster over most instances (c.f.
Section 5). Then, why OSI? The main reason is that it allows for modularity
(it was ported to the GPU by Meyer and Luttenberger [28]). Games coming
from LTL-formulas are typically huge, one key feature of STRIX is the ability
to solve games modularly, avoiding loading the entire games into memory. The
framework of fast value iteration is specially well suited for a modular approach,
which also opens exciting perspectives for parallelised implementations.

We note that, since G and Gϕ have the same positive cycles, for all finite ϕ,
we can safely apply any potential reduction to a subgame without modifying the
winning region of the players in the global game. To moreover preserve the En-
values, or allow for potentials taking the value∞, we need a further requirement.
Let S be a class of subgames6. We say that a potential assigner Ψ is S-sound
if, for all games G and subgames G′ ⊆ G such that (G′,G) ∈ S, it holds that
Ψ(G′) ≤ EnG |G′ .7 Therefore, if Ψ is S-sound, we can identify subgames of G in
S, solve them partially, and apply the corresponding potential reduction in the
whole game G.

The rest of the section is devoted to a proof of Theorem 2.

Termination. Termination of Algorithm 1 is ensured thanks to lines 6 and 7:
the function Φ strictly increases in each non-terminating iteration, and it only
takes values in [0, nW ] ∪ {∞}, hence the bound n2W .

Correctness. We now state the key technical theorem enabling our framework.
It describes the effect of sound potential reductions over energy values, allowing
to combine them. From it, we easily derive compositionality of sound potentials.

Theorem 3 (Update of energy values). If ϕ is sound then EnG = ϕ+EnGϕ .

Corollary 2 (Compositionality). If ϕ is sound for G and ϕ′ is sound for Gϕ
then ϕ+ ϕ′ is sound for G + G′.

We are now ready to prove Theorem 2.

6Formally, a class of pairs (G′,G), with G′ ⊆ G.
7Any sound potential is STrap-sound for the class of subgames (G′,G) such that G′

is a Min-trap in G (as EnG′ ≤ EnG |G′ in that case).
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Proof (Informal proof for Theorem 2). Let Gi, ϕi = Ψ(Gi) and Φi = ϕ1 + · · ·+
ϕi−1 denote the game, potential and cumulative sum at the i-th iteration of
the algorithm. Since Ψ is sound, ϕi is sound for Gi for all i. Thus it follows
from an easy induction and compositionality that for all i, Φi is sound for G. In
particular, for the maximal i, Theorem 3 gives Φi + EnGi = EnG , but moreover
since ϕi = 0 we get by completeness that EnGi = 0 which concludes. ut

3.3 Asymmetry and alternating fast value iteration

Fast value iteration are based on successive underapproximations of the energy
valuation En, which is inherently asymmetric. However, the initial problem (solv-
ing mean-payoff games) is itself symmetric, which calls for the design of more
symmetrical solutions, a recurring theme in the literature [21,22,34,36].

Dual algorithm computing Max-values. Let G be the game obtained by swapping
VMin and VMax and relabelling the weights by w = −w. The two games are es-

sentially equivalent, for instance the mean-payoff values in G and G are opposite.
However asymmetric algorithms such as value iterations behave differently over
each game; this is useful for instance if one wants to compute Max strategies in
G, which are output by running value iterations in the dual. But this still does
not provide a symmetric solution.

Alternating fast value iteration. We now consider alternating versions of the
algorithm, by working with potentials in ϕ : V → Z ∪ {±∞}. The algorithm
applies potential reductions corresponding to Ψ and its dualized version Ψ on
the same game in an alternating fashion, until all vertices are sent to +∞ or
−∞. Naturally, when a vertex is set to +∞ or −∞, the adequate attractor is
computed and removed from the game.

Assuming the potential assigner Ψ is sound, since sound potential reductions
do not alter winning regions, the algorithm is correct and Min’s winning region
is the preimage of −∞ by the final potential. Termination, however, is not easily
guaranteed. Interestingly, we observe experimentally that, for some potential
assigners, this alternating algorithm always terminates, and it is even remarkably
fast (see Section 5). We leave as an interesting open problem to determine for
which potential assigners (if any) this algorithm terminates (see conclusion).

4 Instances of fast value iteration

We have already shown (Example 1) how SVI instantiates in our framework.
In this section, we introduce further potential assigners to capture known effi-
cient algorithms for energy games, and prove their soundness. This provides a
streamlined and unified presentation of (versions of) the algorithms OSI [33] and
QDPM [2,3] (Section 4.1), namely the positive path iteration algorithm (PPI).
We also propose a dynamic variant DPPI, corresponding to a potential assigner
generating potentials with provably larger values. At the end of the section we
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also discuss the GKK algorithm [19], and then provide formal comparisons be-
tween the four algorithms stated in our framework.

In all cases, we find that the algorithms are easier to explain over simple
games, which we will assume without loss of generality (see Lemma 1); note also
that simplicity is preserved by potential reductions.

4.1 The positive path iteration algorithm

We now study the fast value iteration algorithm corresponding to the potential
assigner ΨEn+(G) = En+

G . We call it the Positive path iteration algorithm (PPI).
It is immediate to check that the potential assigner ΨEn+ is sound and com-
plete (see Example 2), so Theorem 2 applies, directly giving correctness of PPI.
Moreover, we can in this case simplify the algorithm by removing lines 6-7 in
Algorithm 1, because ΨEn+ is ∞-attracting.

Proposition 1. The potential assigner ΨEn+ is ∞-attracting.

We let NG denote the set of vertices from which Min can ensure to immedi-
ately see a negative vertex: v ∈ VMax (resp. VMin) belongs to N if and only if all
outgoing edges (resp. some outgoing edge) have weight < 0. Note that computing
En+-values in G corresponds to solving a variant of the energy game which stops
whenever N is reached. It turns out that this problem is (efficiently) tractable,
thanks to two-player game extensions of Dijkstra’s algorithm. In fact, two seem-
ingly distinct algorithms are known, corresponding to OSI [33] and QPDM [2].
Remarkably, Khachiyan, Gurvich and Zhao [23] solved the same problem8 earlier
and in a different context (with an algorithm similar to Schewe’s).

Two algorithms for computing En+. We now describe the two algorithms, re-
spectively extracted from [33] and [2]. We first introduce some notation. For a
subset F ⊆ V , a vertex v ∈ F and an edge vv′, we define escF (vv′) = w(vv′) if
v′ /∈ F , and escF (vv′) =∞, if v′ ∈ F . We define the escape value of a vertex as:

escF (v) =

{
min{escF (vv′) | w(vv′) ≥ 0}, if v ∈ VMin,

max{escF (vv′) | w(vv′) ≥ 0}, if v ∈ VMax.

We will only consider subsets F ⊆ NGc, so Max vertices have a non-negative
outgoing edge and Min vertices have only non-negative outgoing edges, in par-
ticular escF (v) ≥ 0. It can be seen as the minimal weight that Min can force
to see while leaving F immediately from v, or ∞ is she cannot force to leave
F in one step, assuming Max is constrained to playing non-negative edges. We
further let F<∞ denote the set of vertices with finite escF , and F<∞Max and F<∞Min

their intersections with VMax and VMin. Last, for v ∈ V , the notation ϕv(v)← x
indicates that ϕv is the potential defined by ϕv(v) = x and ϕv(v

′) = 0 for v′ 6= v.

8This corresponds to Theorem 1 in [23], case (i) with blocking systems B2.
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Algorithm 2 Subprocedure in OSI

Input: Simple game G
Φ← 0
F ← V \NG
while F<∞ 6= ∅ do

if F<∞Max 6= ∅ then
let v ∈ F<∞Max

Φ(v)← max
w(vv′)≥0

w(vv′) + Φ(v′)

else if F<∞Min 6= ∅ then
let v ∈ F<∞Min minimizing

m = min
v′∈F

w(vv′) + Φ(v′)

Φ(v)← m
end if

end while
Φv(v)←∞ for all v ∈ F
return Φ

Algorithm 3 Subprocedure in QDPM

Input: Simple game G
Φ = 0
F ← V \NG
while F<∞ 6= ∅ do

let v ∈ argminF escF (v)
ϕv(v)← escF (v)
F ← F \ {v}
G ← Gϕv

Φ = Φ+ ϕv
end while
Φv(v)←∞ for all v ∈ F
return Φ

Theorem 4 (Adapted from [23,33,2]). Algorithms 2 and 3 both compute
En+
G , and both can be implemented to run in O(m+ n log n) operations.

4.2 A new fast value iteration algorithm

Drawing inspiration from Algorithms 2 and 3 above, we introduce another poten-
tial assigner, leading to a fast value iteration algorithm which we call Dynamic
positive path iteration (DPPI). Note that both algorithms above compute the
Min attractor to NG over non-negative edges, which corresponds exactly to the
set of vertices with finite En+, and obtain the values of En+ by backtracking. We
will also backtrack over the same attractor, and just as in Algorithm 3, we make
potential updates on the fly. The difference is in the precise way in which we
choose the vertices, which enables in our case that some of the potential updates
may cause new edges to become positive, which will then be taken into account,
sometimes leading to a potential > En+.

Lemma 2. The potential assigner ΨDPPI is sound and complete for simple games.

We see DPPI as a marginal improvement over PPI, but an improvement
nonetheless, showing that the barrier imposed by PPI can be broken and mo-
tivating future work. Figure 3 provides a small game where DPPI performs
fewer iterations than PPI, while Theorem ?? below proves that for any game G,
ΨDPPI(G) ≥ ΨEn+(G) (see also the discussion above Theorem ??).
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Algorithm 4 Computation of the ΨDPPI-potential.

Input: Simple game G
1: F ← V \NG
2: while F<∞ 6= ∅ do
3: if there is v ∈ (argmin escF (v)) ∩ VMin then ϕv(v)← escF (v)
4: else let v ∈ argmaxv∈F<∞

Max
escF (v) and ϕv(v)← escF (v)

5: end if
6: F ← F \ {v}
7: G ← Gϕv

8: end while
9: ϕv(v)←∞ for all v ∈ F

10: return
∑
v∈V ϕv

Fig. 3. A game G (all vertices belong to Max) where DPPI performs a single iteration,
as ΨDPPI(G) = [v1 → 10; v2 → 9; vN → 0] = EnG . In contrast, PPI requires two
iterations since En+ = [v1 → 10; v2 → 5; vN → 0].

4.3 The GKK algorithm

We include a short discussion about the GKK algorithm; a more detailed modern
exposition, including state-of-the-art upper bounds and comparison with the
related approach of Dorman et al. [12], was proposed by Ohlmann [31].

The GKK algorithm is the ΨGKK-fast value iteration where ΨGKK is the po-
tential assigner defined as follows.

Let V− be the set of vertices from which Min can ensure that a negative edge
is seen before the first positive edge. (Note that V− coincides with (En+

G )−1(0).)
Likewise, let V+ denote the set of vertices from which Max can ensure seeing
a positive edge before a negative one; and observe that in a simple game, V+
is the complement of V−. Consider the maximal value w+ such that from any
vertex of V+ Max can ensure to add up to w+ before a negative weight is seen
(alternatively, w+ is the smallest nonzero value of En+

G ) ; and dually for w−.
Note that, if from any vertex in V+, Max can ensure to remain in V+ while
seeing positive vertices, then w+ = ∞. Clearly w+ ≤ En+ ≤ En over V+. We
define ΨGKK(G)(v) to be min(w+,−w−) if v ∈ P and 0 otherwise. Soundness
follows from the inequality above, and completeness is easy to prove. Moreover,
ΨGKK is ∞-attracting.

The potential ΨGKK has a remarkable symmetric property: the assigned po-
tentials are the same over G and over its dual G: ΨGKK = ΨGKK.9 In particular,
the algorithm and its alternating version coincide.

9This was first observed by Ohlmann [31] leading to an improved upper bound.



Fast value iterations for energy games 13

4.4 Comparing fast value iteration algorithms

We now propose formal comparisons between the above potential assigners. In-
tuitively, in order to minimise the number of iterations of a fast value iteration
algorithm, we should seek for potentials assigning large values to vertices, so
that a “big step” is produced in each iteration of the algorithm. In this sense,
if Ψ ≤ Ψ ′, the Ψ ′-FVI algorithm is expected to perform better. A priori, the
sequence of games produced by the two algorithms will diverge, impeding for-
mal comparisons on the number of iterations. However, for monotone potential
assigners, we can also compare the number of iterations of the induced FVI
algorithms.

Lemma 3. For every game G,

ΨFirst+(G) ≤ ΨEn+(G) ≤ ΨDPPI(G), and ΨGKK(G) ≤ ΨEn+(G)

Moreover, there are games making these inequalities strict. The potential assign-
ers ΨFirst+ and ΨGKK are incomparable.

Let Ψ, Ψ ′ be two potential assigners. We say that Ψ ′ is monotonically larger
than Ψ ′, noted Ψ ≤mon Ψ

′ if, for all game and potentials ϕ ≤ ϕ′, it holds

ϕ+ Ψ(Gϕ) ≤ ϕ′ + Ψ ′(Gϕ′).

We say that Ψ is monotone if Ψ ≤mon Ψ .

Lemma 4. Let Ψ, Ψ ′ be sound, complete potential assigners, and assume Ψ ≤mon

Ψ ′. Then over any input game G, the Ψ ′-FVI algorithm terminates in less iter-
ations than the Ψ -FVI algorithm.

Lemma 5. Let Ψ, Ψ1, Ψ2 be potential assigners. It holds:

Ψ ≤mon Ψ1 ≤ Ψ2 =⇒ Ψ ≤mon Ψ2.

In particular, if Ψ is monotone and Ψ ≤ Ψ ′, then Ψ ≤mon Ψ
′.

Lemma 6 ([7,19]). The potential assigners ΨFirst+ and ΨGKK are monotone.

Corollary 3. The algorithms PPI and DPPI terminate in less iterations than
either of SVI or GKK, over any input game.

5 Experimental results

We focus on two distinct game-solving applications: energy game solving, which
is the natural target for our algorithms, and parity game solving, which incurs
a conversion cost to energy games but allows using established parity game
benchmarks and comparison with other parity game solvers.

In both cases, the algorithms were implemented in Oink [10], a tool devel-
oped to provide a uniform framework for the comparison of parity game solvers.
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After explaining the technical aspects of our implementation, and choices of al-
gorithms and benchmarks, we discuss the most remarkable behaviours that can
be observed in the experiments.

All the following experiments were carried on an Intel® Core™ i7-8700 CPU
@ 3.20GHz paired with 16GiB of memory, each test being capped at 60 seconds
and 10GiB of memory. Arithmetic operations over multiple precision integers
are carried out using the GNU Multiple Precision Arithmetic library (GMP).

Set of algorithms. We compare our implementations of PPI, DPPI and their
alternating versions (PPI-alt and DPPI-alt) to 4 other algorithms. Only one of
them (QDPM) can be executed over general energy games, the other three are
parity game solvers: QDPM from [3], and Zielonka’s recursive algorithm (ZLK),
Tangle learning (TL) and Recursive tangle learning (RTL) (winner of the last
edition of SYNTCOMP) from [9,10].

We remark that we do not include comparisons with SVI [7], nor with GKK-
DKZ [19,12], as these algorithms are known to be inefficient in practice [3] and
incur in frequent timeouts. Also, we have not compared to an independent im-
plementation of OSI, as we have not found one such implementation computing
winning regions consistent with the rest of the algorithms.

5.1 Parity game solving

We rely on the yearly competition SYNTCOMP24 for our benchmarks, which
has a competition track for parity game solvers. We subdivide the approximately
1000 benchmarks into two categories: synthetic games (crafted by researchers,
usually with the intent of being hard for certain parity game solving approaches)
and organic games (the natural counterpart of the synthetic games). We note
that the synthetic games include the “two counter games” examples [11], in
which TL and RTL show an exponential behaviour. It also contains the family
of examples by Friedman [17], supposedly exponential for OSI.

As is usual in this settings we present the experimental results as a survival
plot, which indicates how many tests are solved (x-axis) within a time limit
(y-axis, time per test). In order to solve input parity games with energy games
solvers, we first need to convert the parity game into an energy one. This costly
step is included in the runtime of our algorithms as well as QDPM.

5.2 Energy game solving

We modified Oink so that it would accept negative weights and implemented
a strategy-checker for energy games — this boils down to checking that, in the
game restricted to the strategy, Max-winning strongly-connected components do
not have infinite negative cycles, and symmetrically for Min.

We consider randomly generated bipartite graphs. The restriction to bipartite
graphs is justified by the fact that, otherwise, the vast majority of vertices are
part of winning cycles controlled by the same player, making the game (and its
resolution) much easier. We separate instances that are sparse (the out-degree
of each vertex is 2) or dense (the number of edges is n2/5).
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5.3 Conclusions of the experiments

In the light of the experiments above, we derive the following conclusions.

1. Overall, the fast value iteration framework captures several algorithms (PPI,
PPI-alt, QDPM) that perform competitively in standard benchmarks of par-
ity games. Despite being less efficient than leading parity game solvers, they
are remarkably robust against hard instances, particularly PPI-alt.

2. The alternating version of PPI and DPPI, for which we were unable to
prove termination in theory, always terminate. Moreover, over instances com-
ing from parity games benchmarks, they are significantly faster than their
asymmetric counterparts.

3. While DPPI was introduced as a theoretically enhanced version of PPI,
there is no significant difference in the running time of these algorithms.
In fact, DPPI tends to be slightly slower, due to the increased cost in the
computation of the potential.
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4. Although based on the same algorithmic ideas, QDPM consistently outper-
forms PPI, by almost an order of magnitude. This difference can be explained
by two factors: (1) QDPM uses some smart implementation optimizations [3,
Sect. 5], and (2) our implementation of PPI is tailored for (usual) edge-
weighted games, whereas QDPM is implemented for vertex-labelled game
(for which two weights outgoing a given vertex are always equal).

6 Conclusion and future work

We have presented a general framework to describe algorithms for energy games,
capturing and providing simple descriptions and correctness proofs for many of
the algorithms, including the top performing ones in practical scenarios. The fast
value iteration framework raises numerous exciting questions; we outline some
of them here.

New algorithms. The new framework provides a very easy way to propose new
correct algorithms: it suffices to define a potential assigner which is sound, com-
plete, and computable in polynomial time. We have isolated ΨEn+ as a important
potential assigner, implicitly used by the two fastest algorithms solving energy
games, and presented the potential ΨDPPI which, while still being computable in
polynomial time, is ≥ ΨEn+ in general.

Question 1. Does there exist a reasonable10 potential assigner which is sound,
complete, computable in polynomial time and ≥ ΨDPPI?

Alternating algorithms. Our framework also allows to design symmetric alternat-
ing algorithms, for which we are unable to prove termination using the currently
available tools. Our empirical study shows that, in practice, these not only ter-
minate, but are often considerably faster than their asymmetric counterparts.

Question 2. Do alternating fast value iterations terminate over simple games?

We stress the fact that the question is open for all sound and complete po-
tential assigners (except for GKK, for which the alternating algorithm coincides
with the normal one, see Section 4.3).

Lower bounds. Friedmann proposed notoriously involved constructions which
provide exponentially many iterations for strategy improvement algorithms in [17].
Although it is claim (see [17, Sect. 4.6.2]) that these include OSI, our experi-
ments show that PPI can solve these instances in linear time, and PPI-alt in a
constant number of 2 iterations. Currently, we lack any family of examples in
which PPI takes more than a linear number of iterations, although we expect
that it should admit exponential lower bounds.

Question 3. Can one design superpolynomial lower bounds on the number of
iterations for PPI? And (more challenging) for its alternating variant?

10A non-reasonable example meeting the requirements is ΨDPPI ◦ ΨDPPI.
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Randomized initialization. As remarked in Section 3.1, the weights of the cycles
of G and Gϕ coincide for any finite potential ϕ, so the threshold problem for the
mean-payoff objective is equivalent over these games. Therefore, we can initialize
a given game with an arbitrarily potential ϕ, and solve the “perturbed game”.
This directly provides a randomized version of any algorithm: add a random
perturbation before execution. This idea is not novel, it was studied empirically
by Beffara and Vorobyov [1] for the GKK algorithm; and lower bounds were
later derived by Lebedev [24] for the same algorithm.

Question 4. Is the randomized variant of PPI subexponential? More generally,
can we design a potential assigner whose associated randomized fast value iter-
ation is subexponential?

Smooth analysis. An interesting parallel can be drawn with smooth analysis [35],
which consider small perturbations of the input (randomized initialization is
difference since we get an equivalent input). In fact, it was recently established
that there is a strategy improvement algorithm for mean-payoff games that is
polynomial in the sense of smooth analysis [25].

Question 5. Can the algorithm of [25] be recast as a fast value iteration?
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